1. \(f(x) = 3x - x^2 \) find \(f(x + 2) - f(4) \)
 \[f(x+2) = 3(x+2) - (x+2)^2 = 3x + 6 - (x^2 + 4x + 4) \]
 \[= -x^2 - x + 2 \]
 \[f(4) = 3(4)(4)^2 = 12 - 16 = -4 \]

2. \(y = -x^2 + 6x - 2 \), \(x < 4 \). Find range (no graphers).

3. \(y = -3x + b \) \(x > 0 \), \(b > 0 \) Find range (no graphers).
1. Solve the system, show work algebraically.
 \[
 \begin{align*}
 3x + 5y &= -1 \\
 -2x + 2y &= -10
 \end{align*}
 \]

2. Find \(m \) and \(c \) so that the system:
 \[
 \begin{align*}
 3x - 4y &= -10 \\
 9x + my &= c
 \end{align*}
 \]
 has
 a) no solution
 b) infinite solutions
3. Solve, show work algebraically.
 a) \(x + 3 = \frac{28}{x} \)
 b) \(x(x + 8) = -7 \)

\[
x^2 + 8x = -7
\]
\[
x^2 + 8x + 7 = 0
\]
\[
(x + 7)(x - 1) = 0
\]

\(x = -7 \) \(x = -1 \)

3a) \(\)

b) \(\)

4. Find \(k \) for which \(2x^2 + kx + 2 = 0 \) has
 a) one real solution
 b) 2 real solutions
 c) no real solution

4a) \(\)

b) \(\)

c) \(\)
5. Put in turning point form and hence find the vertex.

 \[y = 3x^2 + 12x + 17 \]

 \[\text{vertex: } \]

6. Find the equation of the parabola with x-intercepts at -4 and 3 and y-intercept at -6.

7. Solve. Express answer in interval notation.

 \[2x^2 + x - 1 < 0 \]
8. Graph the functions on the same set of axes, then solve: $f(x) < g(x)$.

$f(x) = x - 5 \quad \text{and} \quad g(x) = x^2 - 6x + 5$

8. solution:

9. Find m so that the line is tangent to the parabola.

$y = 2x + m$
$y = x^2 + 3x - 5$
Translations and Vector Notation:

Horizontal translations \(g(x) = f(x - a) \)

Example: \(g(x) = (x+3)^2 \)

The parent graph \(f(x) = x^2 \), with a horizontal translation, to the left 3. We have added 3 to all of the x coordinates, giving the appearance that the graph has moved 3 LEFT.

Vector Notation for this translation:

\((-3) \) (x direction)

\((0) \) (3 left)
Vertical Translation \(g(x) = f(x) + b \)

Ex: \(g(x) = x^2 + 3 \) is the parent graph \(f(x) = x^2 \), with a vertical translation. We have added 3 to all of the outcomes which makes it look like the graph has been shifted **UP 3**.

Vector Notation for this translation:

\[
\begin{pmatrix} 0 \\ 3 \end{pmatrix} \rightarrow y \text{ direction up 3}
\]
Given the graph of $f(x)$, sketch the graph of $f(x-2)+1$

Vector Notation for this translation: $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$
Find an equation of the relation under the translation vector, and graph the original equation and the translated one.

1. $x^2 + y^2 = 25$; \(\begin{pmatrix} 3 \\ 2 \end{pmatrix} \)

2. $xy = 4$; \(\begin{pmatrix} -2 \\ 1 \end{pmatrix} \)
3. \[y = \sqrt{x - 3} \quad ; \quad \begin{pmatrix} 4 \\ -2 \end{pmatrix} \]

\[f(x) = \sqrt{x} \]
Express, in terms of \(f(x) \), the transformation required to map \(f(x) \) to \(g(x) \)

\[
f(x) = x^2, \quad g(x) = x^2 - 6x + 13
\]

\[
\begin{align*}
(x^2 - bx + q) &= -13 + 9 \\
(x - 3)^2 &= -4 \\
g(x) &= (x - 3)^2 + 4 \\
\text{Vertex} \quad &3, 4
\end{align*}
\]

\[
\begin{align*}
\left(\frac{3}{4}\right), \quad f(x) \to f(x - 3) + 4
\end{align*}
\]
"An A student does a problem and checks the back
A B student does all the problems than checks the back
A C student checks the back the day before the homework quiz
A D student never checks the back
An F student doesn't do the homework"

~ Baker
HW: SL Book

p. 174 #1 RC, 2a, 3c, 4c, 5c,

6 LC, 7 LC, 9ab