1. Solve the system, show work algebraically.
 \[\begin{align*}
 \text{a)} & \quad 3x + 5y = -1 \\
 \text{b)} & \quad 2x + 10y = -2 \\
 \text{c)} & \quad -6x + 10y = -30 \\
 \text{d)} & \quad 10y = -32
 \end{align*} \]

 Check:
 \[\begin{align*}
 -2(3) + 2(-2) &= -10 \\
 -6(-2) + (-2) &= 10
 \end{align*} \]

2. Find \(m \) and \(c \) so that the system:
 \[\begin{align*}
 3x - 10 &= -10 \\
 3x - 4y &= -10 \\
 7x - 12 &= -30 \\
 9x + my &= c
 \end{align*} \]

 has
 a) no solution
 b) infinite solutions

3. Solve, show work algebraically.
 a) \[\frac{x + 3}{x} = \frac{28}{7} \]
 \[\begin{align*}
 & x + 3 = 28 \\
 & x = 25
 \end{align*} \]
 b) \[x(x + 8) = -7 \]
 \[\begin{align*}
 & x^2 + 8x + 7 = 0 \\
 & (x + 7)(x + 1) = 0 \\
 & x = -7 \quad x = -1
 \end{align*} \]

4. Find \(k \) for which \(2x^2 + kx + 2 = 0 \)
 has
 a) one real solution
 \[\begin{align*}
 & b^2 - 4ac = 0 \\
 & k^2 - 4(2)(2) = 0 \\
 & k^2 = 16 \quad k = \pm 4
 \end{align*} \]
 b) 2 real solutions
 \[k > 4 \]
 c) no real solution
 \[k < -4 \]
5. Put in turning point form and hence find the vertex.

\[y = 3x^2 + 12x + 17 \]

\[3(x^2 + 4x + 1) = -17 + 12 \]

\[3(x+2)^2 + 5 \]

5. \[y = 3(x+2)^2 + 5 \]
 vertex: \((-2, 5)\)

6. Find the equation of the parabola with x-intercepts at -4 and 3 and y-intercept at -6.

\[-6 = a(0+4)(0-3)(x+4)(x-3) \]

\[-6 = a(-12) \]

\[a = \frac{1}{4} \]

6. \[y = \frac{1}{4}x^2 + x - 12 \]

7. Solve. Express answer in interval notation.

\[2x^2 + x - 1 = 0 \]

\[(2x-1)(x+1) = 0 \]

\[\text{interval notation: } (-1, \frac{1}{2}) \]

7. \((-1, \frac{1}{2})\)

8. Graph the functions on the same set of axes, then solve: \(f(x) < g(x) \).

\[f(x) = x - 5 \]

\[g(x) = x^2 - 6x + 5 \]

\[f(x) = 2 - 5 \]

\[g(x) = (x-3)^2 - 4 \]

\[q(2) = (2-5)(2-1) \]

\[= (-3)(1) \]

\[= -3 \]

8. solution: \(x < 2 \) \(\cup \) \(x > 5 \)

9. Find \(m \) so that the line is tangent to the parabola.

\[y = 2x + m \]

\[y = x^2 + 3x - 5 \]

\[x^2 + 3x - 5 = 2x + m \]

\[x^2 + x - 5 - m = 0 \]

\[B^2 - 4AC = 0 \]

\[\text{difference of functions} \]

\[4m = -21 \]

\[m = -\frac{21}{4} \]