Precalc Warm Up # 2-1

Graph (w/out grapher)

1. \(f(x) = 4 - \frac{2}{5}x \)

2. \(8x - 4y = 24 \)

3. \(x = 4 \)

4. \(2y = 12 \)

Label any x- and y-intercepts, and give slope
4. (c) \[ax = b(a - x) \]
 \[ax = b - ab + bx \]
 \[\frac{1}{a} + \frac{1}{x} = \frac{1}{b} \]
 \[abx \]

 (f) \[a \left(\frac{1}{a} + \frac{1}{x} \right) = b \left(\frac{1}{b} \right) \]
 \[\frac{a}{a} + \frac{a}{x} = \frac{b}{b} \]
 \[\frac{a}{x} = \frac{b}{b} \]

 (i) \[\frac{a}{b-x} = \frac{b}{a-x} \]
 \[a^2 - ax = b^2 - bx \]
 \[ax - bx = a^2 - b^2 \]
 \[x \left(b - a \right) = (a + b)(b - a) \]
 \[x = b + a \]
5.

(c) \[|2 - \frac{1}{3}x| = 4 \]

(f) \[|2x + \frac{1}{4}| = 1 \]

(i) \[\left| \frac{2}{3}x + 1 \right| = 1 \]

(l) \[|2ax - b| = 3b \]
1. Solve the following inequalities.

(c) \[x + 1 > \frac{x + 3}{2} \]

(f) \[1 - 3x < 5x - 2 \]

2. (c) \[\frac{x}{5} + \frac{2 - 3x}{3} \geq -2 \]
3. Solve the following inequalities.

(c) \[\frac{x \cdot b}{a} + \frac{x}{a^2} < \frac{4x \cdot b}{a} - \frac{x}{a^2}, \quad b > a > 0 \]

\[\frac{ax + b}{a^2} < \frac{4ax - b}{a^2} \]

\[ax + b < 4ax - b \]

\[a = 3ax \]

\[-3ax \]

\[\frac{-2b}{-3a} \]

\[x > \frac{2b}{3a} \]

(d) \[a \left[x + \frac{x - 1}{a + 1} \right] > \left[\frac{x + 1}{a + 1} - ax \right] a > 0 \]

\[x(a+1) + x - 1 \geq x + 1 - ax(a+1) \]

\[ax + x + x - 1 \geq x + 1 - a^2x - ax \]

\[a^2x - 2ax + x \geq 2 \]

\[x(a^2 - 2a + 1) \geq 2 \]

\[x(a-1)^2 \geq 2 \]

\[x \geq \frac{2}{(a-1)^2} \]

Sign OK, it was $>$.
4. Solve the following inequalities.

(c) \[|4x - 2| \leq 8 \]
(f) \[|3x + 3| \leq 12 \]
(i) \[\left| 3x + \frac{1}{2} \right| \leq \frac{3}{4} \]
5. Solve the following inequalities.

(c) \[|1 - \frac{x}{2}| > 7 \]

(f) \[12 - |4 - x| > 2 \]

(i) \[|3 - \frac{x}{2}| \geq 5 \]
6. For what value(s) of \(p \) does \(\left| \frac{3x}{2} - 7 \right| \leq p - 3 \) have no solutions?

Pos #
or
zero

\(p - 3 \) must be negative to have no solution

\(p - 3 < 0 \)

\(p < 3 \)
from Friday:

Speed Solve for x, where $a < -1$

$$x + \frac{x - 1}{a + 1} \geq \frac{x + 1}{a + 1} - ax$$
Writing line equations:

We know how to calculate the slope (gradient)

\[\text{slope} = \frac{\text{rise}}{\text{run}} \]

\[m = \]

This leads us to an equation for a line, in Point-Slope form (gradient-point)
Using the definition of slope, we can get slope-intercept form of a line.

\[m = \frac{y - b}{x - 0} \]
3 forms for a line:

slope-intercept form (gradient-intercept)

point-slope form (gradient-point)

standard form
Parallel lines have the same slope.

\[m_1 = \]

\[m_2 = \]

The slopes of Perpendicular lines have a product of -1

\[m_1 = \]

\[m_2 = \]
1. Find equation of the line that passes through

 (-4,9) and (1,0)

2. Find equation of the line parallel to the line in problem 1,

 but passes through (-5,7)

3. Find the equation of the line perpendicular to the line in

 problem 1, but passes through (2,4)
4. The lines \(px - 7y + 3 = 0 \) and \(3x - y + p = 0 \) are perpendicular. Find the value of \(p \).

Use \(\perp \) slopes have a product of -1:
5. Graph $f(x) = \frac{a}{a+1} x + a$ where $a < -1$

 label x- and y- intercepts
HW: SL book

p. 32 #1-2 MC, 3-10 (label graphs with the x and y intercepts as ordered pairs.)

p. 37 #1 LC, 2i, 3i (all by hand, show process!)

HW Quiz Tomorrow:
SL book p. 20, 25, 28

Quiz Thursday: SL 2.1 - 2.3