Ch. 8 Notes

Covalent Bonds: formed when atoms share electrons. Shared electrons are part of the outer energy level of both atoms.

* Formed from 2 or more NON-metals

\[
\begin{align*}
\text{NaCl} & \quad \text{CO}_2 \\
\text{metal} & \quad \text{non-metal} \\
\text{Ionic compound} & \quad \text{Covalent (molecular) compound}
\end{align*}
\]

Covalent compounds form to increase stability

- 2 forces
 - Repulsive: between the nuclei & the e-
 - Attractive: between the nucleus of one atom & e of the other

Covalent bond forms when attractive forces strongest.

\[
\begin{array}{c}
\text{F} \end{array}
\quad \begin{array}{c}
\text{F}
\end{array}
\]

Bonds to form an octet or noble gas configuration.

- "Octet" for hydrogen is 2
- Helium

\[
\begin{align*}
\text{lone pairs} & \quad \text{F} - \text{F} \\
\text{dashed represents} & \quad \text{a shared pair of e} \rightarrow \text{bonded pair}
\end{align*}
\]
Single Covalent Bond - sharing of 2 e−.

Group 17: form one single covalent bond

\[
\text{Cl} - \text{Cl}
\]

Group 16: form 2 single covalent bonds.

\[
\begin{align*}
\text{O} & - \text{H} \\
\text{H} & \\
\text{S} & - \text{F} \\
\text{F} & \\
\end{align*}
\]

Group 15 - form 3 bonds

\[
\begin{align*}
\text{H} & - \text{N} - \text{H} \\
\text{H} & \\
\end{align*}
\]

Group 14: form 4 bonds

\[
\begin{align*}
\text{H} & - \text{C} - \text{H} \\
\text{H} & \\
\end{align*}
\]
Diatomic Molecules - 7 naturally occurring

- Hydrogen H₂
- Chlorine Cl₂
- Nitrogen N₂
- Oxygen O₂
- Fluorine F₂
- Bromine Br₂
- Iodine I₂

Chemical Reactions:

\[2H₂ + O₂ \rightarrow 2H₂O \]

Molecular Structures:

- B₃
- PH₃
- H₂S
- HCl
- CCl₄
- SiH₄

C₁–C₁–C₁

Nonpolar Covalent Bonds

- O–O

Polar Covalent Bonds

- O=O

Double & Triple Covalent Bonds

- Double: 4 e⁻ shared (2 pairs)
- Triple: 6 e⁻ " (3 pairs)
Sigma Bond \(\sigma \) - Single covalent bond

- When a pair of shared e\(^{-}\) are centered between the two atoms
- Shared e\(^{-}\) are concentrated in the overlapping space between nuclei.

\[\text{\(s \, s \), \(s \, p \), \(p \, p \)} \]

Pi Bond \(\pi \)

- Forms when parallel orbitals overlap.
- Shared e\(^{-}\) are in an area above or below the area centered between nuclei

\[\text{\(p \), \(p \)} \]

- Multiple bonds
 - 1st is a sigma, rest are pi bonds

\[\text{\(O = O \), \(N\!\!\overset{\sigma}{\rceil}N \), \(N\!\!\overset{\pi}{\rceil}N \)} \]
Bond Strength:
- Dependent on distance between nuclei
- Distance decreases with increasing # of shared e-
- Shorter bond length = stronger bond.
 strength: Triple > double > single

Energy:
- Energy released when bonds form
- Energy required to break bonds
 Called Bond dissociation Energy
Rules for naming binary molecular compounds
2 elements bonded with covalent bonds
2 non-metals \(\text{ex: N}_2\text{O} \)

1. Name first element, using the entire name
2. Second element ends in ide.
3. Use prefixes to indicate the \# of atoms.

\[\text{Di Nitrogen MonoOxide}\]

Exceptions
- If there is only one first element, can eliminate mono
- If there are two consecutive vowels, can eliminate one

\[\text{SO}_2 \quad \text{Sulfer Dioxide}\]
\[\text{NF}_3 \quad \text{Nitrogen triflouride}\]
\[\text{P}_2\text{O}_5 \quad \text{Diphosphorous Pentoxide}\]
\[\text{CCl}_4 \quad \text{Carbon TetraChloride}\]

Diatomic Elements
\[\text{H}_2 \quad \text{Hydrogen} \quad \text{Cl}_2 \quad \text{Chlorine}\]
\[\text{N}_2 \quad \text{Nitrogen} \quad \text{Br}_2 \quad \text{Bromine}\]
\[\text{O}_2 \quad \text{Oxygen} \quad \text{I}_2 \quad \text{Iodine}\]
\[\text{F}_2 \quad \text{Fluorine}\]
dihydrogen monoxide \(\text{H}_2\text{O} \) \hspace{1cm} \text{Common Names}
Chlorine trifluoride \(\text{ClF}_3 \) \hspace{1cm} \text{H}_2\text{O} - \text{Water}
Diphosphorus trioxide \(\text{P}_2\text{O}_3 \) \hspace{1cm} \text{NH}_3 - \text{Ammonia}
Disulfur decafluoride \(\text{S}_2\text{F}_{10} \) \hspace{1cm} \text{CH}_4 - \text{Methane}
Bromine \(\text{Br}_2 \)

Naming Acids:
Acids - Substance that produces hydrogen ions (H⁺) in solution.
- **Binary Acids** - H⁺ and a monoatomic anion
 1. First word is prefix "hydro" with the root of the anion with a suffix of "ic".
 2. Second word is Acid.
 Ex: HCl Hydrochloric Acid
 HBr Hydrobromic Acid
- **Oxyacids** - H⁺ and an oxyanion (polyatomic anion with oxygen)
 1. "ite" : root of anion with suffix "ous" followed by "acid"
 Ex: HNO₂ Nitrous Acid
 2. "ate" : root of anion with suffix "ic" followed by "acid".
 Ex: HNO₃ Nitric Acid
HI Hydroiodic Acid Phosphoric Acid \(\text{H}_3\text{PO}_4\)
HClO₃ Chloric Acid Nitrous Acid \(\text{H}_2\text{NO}_2\)
HClO₂ Chlorous Acid Hydrofluoric Acid \(\text{H}_2\text{F}^-\text{F}^-\)
H₂SO₄ Sulfuric Acid Carbonic Acid \(\text{H}_2\text{CO}_3\)
H₂S Hydro sulfurous Acid

Bases:
Compounds that produce \(\text{OH}^-\) (hydroxide ions) in solution
Named like any ionic compound
Ex: NaOH Sodium hydroxide
Ba(OH)₂ Barium hydroxide