Hardy-Weinberg Practice **AP Biology**

- 1. In a population of 200 mice, 98 are homozygous dominant for brown fur (BB), 84 are heterozygous (Bb), and 18 are homozygous recessive for white fur (bb).
 - a. The genotype frequencies of this population are 0, 19 BB, 0.42 Bb, and 0.09 bb.

Name:

- b. The allele frequencies of this population are 0.7 B allele and 0.3 b allele.
- 2. Use the allele frequencies you determined in question #1 to predict the genotype frequencies of the next generation.

 - a. B(p) = 0.7 b(q) = 0.3b. $BB = p^2 = 0.49$ Bb = 2pq 0.42 $bb = q^2 = 0.09$
- 3. In a population that is in Hardy-Weinberg equilibrium for two alleles, C and c, 16% of the population show a recessive trait. Assuming C is dominant to c, what percent show the dominant trait? 84%
- 4. The allele frequencies in a population are A= 0.6 and a = 0.4. Predict the genotype frequencies for the next generation.
 - AA 0, 36 Aa 0.48 aa 0.16
 - a. What would the allele frequencies be for the generation you predicted? A $O_{1} \omega$ a O. 4.
 - b. Suppose you are able to determine the actual genotype frequencies in the population and find that these frequencies differ significantly from what you predicted. What would such a result indicate?

5. Sixty flowering plants are planted in a flowerbed. Forty of the plants are red-flowering homozygous dominant. Twenty of the plants are white-flowering homozygous recessive. The plants naturally pollinate and reseed themselves for several years. In a subsequent year, 178 red-flowered plants, 190 pink-flowered plants, and 52 white-flowered plants are found in the flowerbed. Use a chisquare analysis to determine if the population is in Hardy-Weinberg equilibrium. (Round your answers to three decimal places.)

Step 1: Find the allele frequencies in the original population

$$p = \frac{80/1200,667}{1200,667} q = \frac{10/1200,333}{1200,333}$$

Step 2: Use the equation $p^2 + 2pq + q^2 = 1$ to find the predicted genotype frequencies of the population once it has reached Hardy-Weinberg equilibrium.

$$p^2 = 0.445$$
 2pq = 0.444 q2 = 0.111

	Observed	Expected (round to the nearest whole number)	(o-e)	(o-e) ²	(o-e)²/e
P ²	178	187	-9	81	0.433
2pq	190	186	4	16	0.086
q ²	52	47	5	25	0.532

Step 3: Fill in the data table and figure out the Chi-square value

Chi Square = 1,049

CHI-SQUARE TABLE										
Degrees of Freedom										
D	1	2	3	4	5	6	17	8		
0.05	3.84	5.99	7.82	9.49	11.07	12.59	14.07	15.51		
0.01	6.64	9.21	11.34	13.28	15.09	16.91	18.48	20.09		

2 degrees of freedom

Step 5: Determine if your population is in Hardy-Weinberg equilibrium

The p-value is not on the chart. This means that the difference between the observed and expected is not statistically significant. The flower population appears to be in Hardy-Weinberg equilibrium and is not evolving.