\qquad Per. Integrated Science: Physics/Design

1. A physical science textbook has a mass of 2.20 kilograms.
a. What is its weight on Earth?

$$
\begin{aligned}
& W=(2.20 \mathrm{~kg})(9.8 \mathrm{~N} / \mathrm{kg})=21.56 \mathrm{~N} \\
& w=22 \mathrm{~N}
\end{aligned}
$$

b. What is its weight on Mars? $(g=3.7 \mathrm{~N} / \mathrm{kg})$

$$
\begin{gathered}
w=(2.20 \mathrm{~kg})(3.7 \mathrm{~N} / \mathrm{kg})=8.14 \mathrm{~N} \\
w=8.1 \mathrm{~N}
\end{gathered}
$$

c. If the textbook weighs 19.6 newtons on Venus, what is the strength of gravity on that planet?

$$
\begin{aligned}
& g=\frac{19.6 \mathrm{~N}}{2.20 \mathrm{~kg}}=8.909090 \\
& g=8.91 \mathrm{~N} / \mathrm{Kg} \\
& \text { vel oh int newtons on he mon where the strenoth }
\end{aligned}
$$

2. An astronaut weighs 104 newtons on the moon, where the strength of gravity is 1.6 newtons per kilogram.
a. What is her mass?

$$
m=\frac{104 \mathrm{~N}}{1.6 \mathrm{~N} / \mathrm{kg}}=65 \mathrm{~kg}
$$

b. What is her weight on Earth?

$$
w=(65 \mathrm{~kg})(9.8 \mathrm{~N} / \mathrm{kg})=631 \mathrm{~N}
$$

c. What would she weigh on Mars?

$$
w=(65 \mathrm{~kg})(3.7 \mathrm{~N} / \mathrm{Kg})=240 \mathrm{~N}
$$

3. Of all the planets in our solar system, Jupiter has the greatest gravitational strength.
a. If a 0.500 -kilogram pair of running shoes would weigh 11.55 newtons on Jupiter, what is the strength of gravity there?

$$
g=\frac{11.55 \mathrm{~N}}{0.500 \mathrm{Kg}}=23.1 \mathrm{~N} / \mathrm{Kg}
$$

b. If the same pair of shoes weighs 0.3 newtons on Pluto (a dwarf planet), what is the strength of gravity there?

$$
g=\frac{0.3 \mathrm{~N}}{0.500 \mathrm{Kg}}=0.6 \mathrm{~N} / \mathrm{Kg}
$$

c. What does the pair of shoes weigh on Earth?

$$
\omega=(0.500 \mathrm{Kg})(9.8 \mathrm{~N} / \mathrm{Kg})=4.9 \mathrm{~N}
$$

4. A tractor-trailer truck carrying boxes of toy rubber ducks stops at a weigh station on the highway. The driver is told that the truck weighs $195,000 \mathrm{~N}$.
a. What is the mass of the toy-filled truck?

$$
m=\frac{195,000 \mathrm{~N}}{9.8 \mathrm{~N} / \mathrm{Kg}}=19,897.9592
$$

b. The truck drops off its load of toys, and then stops at a second weigh station. Now the truck weighs 147,000 . N. What is the new mass of the truck?

$$
m=\frac{147,000 \mathrm{~N}}{9.8 \mathrm{Nkg}}=15,000 \mathrm{~kg}
$$

c. Find the total mass of the rubber duck-filled boxes that were carried by the truck

$$
\begin{aligned}
& 20,000 \mathrm{~kg} \leftarrow \text { original mass } \\
- & 15,000 \mathrm{~kg} \leftarrow \text { mass without boxes } \\
\hline & 5,000 \mathrm{~kg} \leftarrow \text { mass of boxes }
\end{aligned}
$$

