$$
a=\frac{V_{\text {finish }}-V_{\text {start }}}{t}
$$

Acceleration Story Problems
Name: \qquad Per. Integrated Science: Physics/Design

1. While traveling along a highway, a driver slows from $24 \mathrm{~m} / \mathrm{s}$ to $15 \mathrm{~m} / \mathrm{s}$ in 12 seconds. What is the automobile's acceleration? (Remember that a negative value indicates a slowing down or deceleration.)

$$
\frac{15 \mathrm{~m} / \mathrm{s}-24 \mathrm{~m} / \mathrm{s}}{12 \mathrm{~s}}=-0.75 \mathrm{~m} / \mathrm{s}^{2}
$$

2. A parachute on a racing dragster opens and changes the speed of the car from $85 \mathrm{~m} / \mathrm{s}$ to $45 \mathrm{~m} / \mathrm{s}$ in a period of 4.5 seconds. What is the acceleration of the dragster?

$$
\frac{45 \mathrm{~m} / \mathrm{s}-85 \mathrm{~m} / \mathrm{s}}{}=-8.9 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
4.55
$$

3. A helicopter's speed increases from $25 \mathrm{~m} / \mathrm{s}$ to $60 \mathrm{~m} / \mathrm{s}$ in 5 seconds. What is the acceleration of this helicopter?

$$
\frac{60 \mathrm{~m} / \mathrm{s}-25 \mathrm{~m} / \mathrm{s}}{5 \mathrm{~s}}=7 \mathrm{~m} / \mathrm{s}^{2}
$$

4. As she climbs a hill, a cyclist slows down from $25 \mathrm{~m} / \mathrm{s}$ to $6 \mathrm{~m} / \mathrm{s}$ in 10 seconds. What is her deceleration? (Be sure your answer has the correct number of significant digits.)

$$
\frac{6 \mathrm{~m} / \mathrm{s}-25 \mathrm{~m} / \mathrm{s}}{10 \mathrm{~s}}=-2 \mathrm{~m} / \mathrm{s}^{2}
$$

5. A runner goes from $2.0 \mathrm{~m} / \mathrm{s}$ to $10 \mathrm{~m} / \mathrm{s}$. in 6.0 seconds. What is the runner's acceleration? (Be sure your answer has the correct number of significant digits.)

$$
\frac{10 \mathrm{~m} / \mathrm{s}-2 \mathrm{~m} / \mathrm{s}}{6 \mathrm{sec}}=1.3 \mathrm{~m} / \mathrm{s}^{2}
$$

6. A skateboarder traveling at 7.0 meters per second rolls to a stop at the top of a ramp in 3.0 seconds. What is the skateboarder's acceleration?

$$
\frac{0 \mathrm{~m} / \mathrm{s}-7 \mathrm{~m} / \mathrm{s}}{3.0 \mathrm{sec}}=-2.3 \mathrm{~m} / \mathrm{s}^{2}
$$

