## **Electromagnetic Induction**

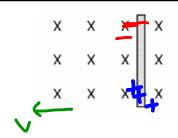
Why will moving a wire through a magnetic field induce a potential difference and a current in the wire? moving a wire through a magnetic field generates a magnetic force on the electrons in the wire and causes them to flow through the wire

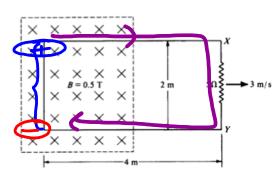
## emf (electromotive force):

## potential difference

Maximum emf (and current) is induced when . . .







## **Induced EMF:**



| Variable: | 2      | B            | ĺ                 | V        |
|-----------|--------|--------------|-------------------|----------|
| Quantity: | EMF    | mag<br>field | léngth<br>of wice | velocity |
| Units:    |        |              | (m)               | [m/5]    |
| Type:     | scalar | vector       | vector            | vector   |

 $\frac{N}{C}$  .  $\frac{N}{M}$  .  $\frac{N}{M}$  .  $\frac{N}{C}$ 





 What is the potential difference induced in a 1.5 meter length of wire moving perpendicular to a 0.4 T magnetic field at a speed of 2.1 m/s?

2. In which direction should the wire be moved = / ]

- 3. A wire loop as shown is pulled to the right at a constant speed of 3 m/s.
- a) Determine the induced potential difference between points X and Y.

b) Determine the magnitude of the induced current.

c) Which way will the current flow?