## February 28, 2020





| Power – energy per unit time                                                                           | Formula:                      | Units:                                                |  |
|--------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------|--|
|                                                                                                        | P = E/L                       | $\left[\frac{3}{5}\right] = \left[\frac{3}{5}\right]$ |  |
| Intensity – power per unit area                                                                        | Formula:                      | Units:                                                |  |
|                                                                                                        | T = P/A                       | $\left[ W \right] m^2$                                |  |
| 3. Light from a 2.5 mW laser has a wavelength of 670 nm. How many photons does it emit in 3.0 minutes? |                               |                                                       |  |
|                                                                                                        | f= °/                         | $15.10^{18}$                                          |  |
|                                                                                                        |                               | 1.JX10 photons                                        |  |
|                                                                                                        | Ephoton: ht                   |                                                       |  |
|                                                                                                        | $E_T = P \cdot t = N \times$  | Ephoton                                               |  |
|                                                                                                        | N- 2.5×103                    | ×1/2×18/5                                             |  |
|                                                                                                        | $N = \frac{1}{(13x/1)^{-3y}}$ | $T_{5} = 3 \times 10^{\circ} \text{m/s}$              |  |
|                                                                                                        | 6.0)~10 ~                     | 670×10-01 pr                                          |  |
|                                                                                                        |                               |                                                       |  |
|                                                                                                        |                               |                                                       |  |
|                                                                                                        |                               |                                                       |  |
|                                                                                                        |                               |                                                       |  |
|                                                                                                        |                               |                                                       |  |
|                                                                                                        |                               |                                                       |  |
|                                                                                                        |                               |                                                       |  |
|                                                                                                        |                               |                                                       |  |

| When light shines from a given source (flashlight, laser, etc.):                      | Energy of each photon | Total energy     | Number of photons |
|---------------------------------------------------------------------------------------|-----------------------|------------------|-------------------|
| If the frequency of the light is constant, as the intensity of the light increases    | remains the same      | increases        | increases         |
| If the intensity of the light is constant, as<br>the frequency of the light increases | increases             | remains the same | decreases         |
| remains the same increa                                                               | ases decreases        |                  | -                 |
|                                                                                       |                       |                  |                   |
|                                                                                       |                       |                  |                   |
|                                                                                       |                       |                  |                   |
|                                                                                       |                       |                  |                   |

| Wave:                                                                                                                    | The energy of a wave depends on its intensity (amplitude), not its frequency so more intense light has more energy per wave.                                                                                                                                              |  |
|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                          |                                                                                                                                                                                                                                                                           |  |
| Particle:Photon energy depends on frequency not intensity.<br>Intensity measures total energy (total number of photons). |                                                                                                                                                                                                                                                                           |  |
|                                                                                                                          |                                                                                                                                                                                                                                                                           |  |
|                                                                                                                          |                                                                                                                                                                                                                                                                           |  |
|                                                                                                                          |                                                                                                                                                                                                                                                                           |  |
|                                                                                                                          |                                                                                                                                                                                                                                                                           |  |
|                                                                                                                          |                                                                                                                                                                                                                                                                           |  |
|                                                                                                                          |                                                                                                                                                                                                                                                                           |  |
|                                                                                                                          |                                                                                                                                                                                                                                                                           |  |
|                                                                                                                          |                                                                                                                                                                                                                                                                           |  |
|                                                                                                                          |                                                                                                                                                                                                                                                                           |  |
|                                                                                                                          |                                                                                                                                                                                                                                                                           |  |
|                                                                                                                          |                                                                                                                                                                                                                                                                           |  |
| e Photoelec<br>ne Experim                                                                                                | <b>tric Effect:</b> the emission of electrons from a metal when electromagnetic radiation of high enough frequency (or low enough wavelength) falls on the surface <b>ent:</b>                                                                                            |  |
| e Photoelec<br>ne Experim<br>Light of va<br>(photoemi                                                                    | <pre>tric Effect: the emission of electrons from a metal when electromagnetic radiation of<br/>high enough frequency (or low enough wavelength) falls on the surface<br/>ent:<br/>rying frequencies and intensities are shone on a metal surface<br/>sive surface).</pre> |  |

## Threshold (minimum) frequency (f<sub>0</sub>):

minimum frequency of light needed to eject electrons from the surface of the metal

Threshold (maximum) wavelength ( $\lambda_0$ ): maximum wavelength of light needed to eject electrons from the surface of the metal

How are these results in conflict with the classical theory about light?

Classical Theory says ... light acts as a wave and the energy of a wave depends on its amplitude (intensity) not its frequency.

## February 28, 2020

|                                                                      | Classical predictions                                                                                    | Experimental evidence                                                                    |  |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|
| Whether electrons are<br>ejected or not depends on<br>               | Intensity of the light<br>(If intense enough, electrons will be<br>ejected no matter what the frequency) | Frequency of the light                                                                   |  |
| The maximum kinetic<br>energy of the ejected<br>electrons depends on | Intensity of the light                                                                                   | Frequency of the light                                                                   |  |
| At low intensities,<br>ejecting electrons                            | Takes time                                                                                               | Occurs instantaneously above<br>threshold frequency<br>but never below certain frequency |  |
|                                                                      |                                                                                                          |                                                                                          |  |
|                                                                      |                                                                                                          |                                                                                          |  |
|                                                                      |                                                                                                          |                                                                                          |  |
|                                                                      |                                                                                                          |                                                                                          |  |

| <b>Vave-Particle duality:</b> Different properties of light (or matter) can be more clearly explained by using ither the wave or the particle model. |                                                                 |                                             |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------|--|
|                                                                                                                                                      | Wave Nature                                                     | Particle Nature                             |  |
| Light (Energy)                                                                                                                                       | - Diffraction - Interference<br>- Doppler Effect - Polarization | Photo-electric Effect                       |  |
| Matter                                                                                                                                               | - Electron Diffraction<br>- Matter Waves                        | Collisions (e.g. Alpha particle scattering) |  |

| Einstein's explanation of the photo-electric effect:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| i) Light acts like a particle (not a wave) in which its energy is proportional to its frequency.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| <ul> <li>ii) Electrons at the surface of the metal need a minimum energy in order to be ejected from the surface, called the work function, an amount which varies from metal to metal. (Electrons below the surface of the metal need more energy to be emitted.)</li> <li>Work Function (φ): φ = h f<sub>0</sub></li> </ul>                                                                                                                                                                                                                                                                               | $hf > \Phi$ $hf = \Phi$ $hf = \Phi$ $electrons ejected$ $hf = \Phi$ $electrons brought to$ $furthere$ $hf = \Phi$ |  |  |
| <ul> <li>iii) There is a one-to-one interaction in which one electron absorbs one photon. If the photon has enough energy (high enough frequency) to overcome the work function, the electron will leave surface immediately with no time delay. If not, the electron will still absorb the photon but will remain bound to the metal.</li> <li>iv) Any "extra" energy (above the work function) is retained by the electron in the form of kinetic energy. The maximum kinetic energy (E<sub>kmax</sub>) is retained by electrons that were most loosely held on the very surface of the metal.</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| <ul> <li>v) The number of photons arriving per second, and therefore the rate of emission of electrons,<br/>is determined by the intensity of the light, not its frequency. The intensity of the light plays<br/>no role in the energy each photon has.</li> </ul>                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |



## February 28, 2020









Use the graph above to determine a value for the work function in electronvolts and for Planck's constant.