

Work and Energy				
Demo 1	Demo 2	Demo 3	Demo 4	
Was energy created in each of the demos above? Explain.				
No – externa work on it	al force transferred en	ergy to the system b	y doing	
Work-Energy Theorem:				
Work done by external force is equal to the change in total energy of the system.				
Formula:	$W = \Delta E$			

Work-Energy Theorem: Work done by external force is equal to the change in total energy of the system.		
Formula:	$W = \Delta E$	

3. A 3.0 kg ball is dropped from a height of 10. m. How fast is it going when it hits the ground? Assume an average air resistance force of 20. N acts on the ball as it falls.

$$a = \frac{5F}{m} = \frac{mg-F_{f}}{m} = \frac{mgh}{mgh} = \frac{1}{2}mv^{2} + F_{f} \cdot d$$

$$V_{f}^{2} = V_{b}^{2} + 2ad$$

$$Mgh - F_{f} \cdot d = \frac{1}{2}mv^{2}$$

$$V = \sqrt{\frac{mgh - F_{f} \cdot d}{5m}}$$

$$\int \frac{3k_{0} \cdot 8n/5^{2} \cdot 10m - 20n \cdot 10m}{.5 \cdot 3vg}$$

