8. A daredevil student jumps off a platform as shown. Determine the speed of the student at the lowest point in the swing.

Work and Energy			
Demo 1	Demo 2	Demo 3	Demo 4

Was energy created in each of the demos above? Explain.

No - external force transferred energy to the system by doing work on it

Work-Energy Theorem:

Work done by external force is equal to the change in total energy of the system.

Formula:

Work-Energy Theorem:

Work done by external force is equal to the change in total energy of the system.

Formula:

$$
W=\Delta E
$$

I. Gravitational Potential Energy

$$
\begin{aligned}
W & =F \cdot d \cdot \cos \theta \\
& =(m g) \Delta h \\
& =\Delta P E_{g}
\end{aligned}
$$

II. Kinetic Energy

$$
\begin{aligned}
W & =F \cdot a \cos \theta \\
& =(m a) d \\
& =m\left(\frac{V_{f}^{2}-V_{0}^{2}}{2^{2}}\right) \\
& =\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{0}^{2} \\
& =\Delta \frac{1}{2} m v^{2}
\end{aligned}
$$

III. Elastic Potential Energy

$$
\begin{aligned}
W & =F_{\text {Avg }} \cdot d \cos \theta \\
& =\left(\frac{K x}{2}\right) x \\
& =\frac{1}{2} K x^{2} \\
& =\Delta P E_{s}
\end{aligned}
$$

February 20, 2020

1. A 25 kilogram object is accelerated from rest to a speed of 12 meters per second by a force of 65 newtons. How much work is done by the force?

February 20, 2020
2. A 5.0 kilogram block slides from rest down a hill with a rough surface. When it reaches the bottom, it has 150 J of kinetic energy. How much work was done overcoming friction as it slid?

$$
\begin{aligned}
& W=\Delta E \\
& \begin{array}{l}
5_{k} \cdot 10 \mathrm{~m} / 2 \cdot 45 \mathrm{~m} \\
\mathrm{mgh}
\end{array}=\frac{1}{2} m v^{2}+Q \\
& 2.25 \mathrm{~J}=150 \mathrm{~J}+\underline{75 J} \\
& F_{g_{11}} d+F_{f} d=150 \mathrm{~J} \\
& 225 \mathrm{~J} \quad(-75 \mathrm{~J})
\end{aligned}
$$

3. A 3.0 kg ball is dropped from a height of $10 . \mathrm{m}$. How fast is it going when it hits the ground? Assume an average air resistance force of $20 . \mathrm{N}$ acts on the ball as it falls.
$a=\frac{\sum F}{m}=\frac{m g-F_{f}}{m}=\quad m g h=\frac{1}{2} m v^{2}+F_{f} \cdot d$
$V_{f}^{2}=V_{0}^{2}+2 a d$

$$
m g h-F_{f} \cdot d=\frac{1}{2} m v^{2}
$$

$$
V=\sqrt{\frac{m g h-F_{f} \cdot d}{5 m}}
$$

$$
\sqrt{\frac{3 \mathrm{k} \cdot 9.9 \mathrm{~m} / \mathrm{h}^{2} \cdot 10 \mathrm{~m}-20 \mathrm{~N} \cdot 10 \mathrm{~m}}{.5 \cdot 3 \mathrm{~kg}}}
$$

February 20, 2020
4. A 5.0 kg box is sliding across a rough surface at $2.0 \mathrm{~m} / \mathrm{s}$ and is brought to rest in 0.40 m . How much work is done by friction in stopping the box? Calculate the force of friction.

a) Determine the total energy of the ball, using the floor as the zero point for gravitational potential energy.
3.56J
b) Determine the speed of the ball at point P, the lowest point of the circle.

c) Determine the tension in the thread at

ii) the bottom of the circle.

