d) How efficient is this process?

Fs	k	x	
Force on a spring	Spring Constant	Change in spring length from the equilibrium position	
[N]	[N/m]	[m]	
vector	scalar	vector	

5. If it takes 20. newtons of force to compress a spring 8.0 cm, what is its spring constant? $K = \frac{F}{X} = \frac{20N}{.08m} = 250NI_{\text{CM}}$

7. How much work is done stretching a spring 0.50 meter if the spring constant is 40. N/m?

F=KX=20N $W=F_{mg}d=5T$

KE	PE_{g}	PE_S	Q
Kinetic energy	Gravitational potential energy	Potential energy stored in a spring (elastic)	Internal energy (thermal energy, heat)
Object in motion	Object above ground level	Stretched or compressed	Friction, heat
$KE = \frac{1}{2} mv^2$	$PE_g = mgh$	$PE_S = \frac{1}{2} kx^2$	Fr.d Q=mc∆T Q=mL
Joules (J)	Joules (J)	Joules (J)	Joules (J)
scalar	scalar	scalar	scalar
Mechanical Ene KE+PEg+PE muimgv+±K	ergy: Es K X ² åm	Total Energy E+PEg+PEs vitmgv+taKX ² +	y: + Q -(Ff.J)

b) Does PE_g depend on the choice of a base level?

yes

c) When does an object have:

i) Positive PEg? above base level

ii) Zero PE_g? at base level

iii) Negative PE_g? below base level

d) Does the change in potential energy (ΔPE_g) depend on the choice of a base level? $\bigvee_{\mathbf{D}}$

1/2 700 kg (25-15) + 900 kg 10 m/s 1.45 m $= 68 \times 10^{5}$

