6. How much work is done on a 120.-kilogram satellite as it orbits the Earth?
centripetal forces never do work

F is in, V is tangent

$$
\cos (90)=0
$$

Efficiency:

the ratio of the amount of useful work done to the amount of total work done

Formula: eff $=\frac{\text { useful }}{\text { total }}$

1. An electric motor has an input power of 160 W . In raising a load, 120 W of power are dissipated. What is the efficiency of the motor?

2. A student does 400 . J of work using a pulley to raise a 72 N box to a height of 5.0 meters.
a) How much work does the student do against gravity?

$$
W=F \cdot d=72 \mathrm{~N} \cdot 5 \mathrm{~m}=360 \mathrm{~J}
$$

b) How much work does the student do against friction?
c) How efficient is this pulley?

$$
\frac{360 J}{400 J}=.9
$$

\square
3. A 160.-newton box is pulled to the top of a frictionless ramp at constant speed as shown in the diagram. Calculate the amount of work done.

$$
\begin{gathered}
\left.W=\begin{array}{c}
F_{11} \cdot d \\
80 \mathrm{~N} \cdot 10 \mathrm{~m}
\end{array}\right)
\end{gathered}
$$

4. Compare the amount of work needed to get this box to the top of the hill by either lifting it or dragging it up the incline if:
a) the incline is frictionless
same
b) the incline is not frictionless
$W_{\text {ramp }}>W_{\text {lift }}$

Path Independent:

In the absence of friction, work done against gravity is independent of the path chosen
5. An 8.0 newton force is used to pull a 10.0 newton box 6.00 meters up a rough hill at constant speed as shown in the diagram.
a) How much work was done pulling the box up the hill?

$$
\begin{aligned}
& W=F_{1} \cdot d \\
& 8 N \cdot 6 m=485
\end{aligned}
$$

60

b) How much work was done overcoming gravity?

$$
\begin{array}{rlrl}
\text { vas done overcoming gravity? } \\
F_{g} \cdot d \cdot \cos \theta & \text { or } F_{g} \cdot d \sin \theta & F_{11} \cdot d & =5 \mathrm{~N} \cdot 6 \mathrm{~m} \\
& =30 \mathrm{~J}
\end{array}
$$

c) How much work was done overcoming friction?

$$
\begin{aligned}
F_{f} \cdot d & =3 \mathrm{~N} \cdot 6 \mathrm{~m} \\
& =18 \mathrm{~J}
\end{aligned}
$$

