

Combining Light Bulbs in Series

4. Assume each light bulb has a resistance of 10Ω . Analyze each circuit.

<u>R</u>	
la la	
لــــــــــــــــــــــــــــــــــــ	

	Bulb #1	Bulb #2	Circuit Total
R	10 s	nol	202
V	1.5V	1.5V	3v
I	.15A	. (5 A	. 15A
Р	ุววรพ	,225w	.45w

Analyzing Series Circuits

6. Determine the current through each resistor, the potential drop across each resistor, and the power dissipated by each resistor in the circuit below. $R_{\tau} = R_{\tau} + R_{z} = 90 \text{ ac}$ $T_{\tau} = \sqrt{\tau} R_{\tau} = \sqrt{90 \text{ ac}} = .1 \text{ A}$ $\sqrt{0} = 1 R_{00} = .1 \text{ A}$ $\sqrt{0} = 1 R_{00} = .1 \text{ A} \cdot 30 \text{ ac} = 3 \text{ ac}$ $\sqrt{0} = 1 R_{00} = .1 \text{ A} \cdot 600 = 6 \text{ ac}$ $R_{00} = 1 R_{00} = .1 \text{ A} \cdot 600 = 6 \text{ ac}$ $R_{00} = 1 R_{00} = .1 \text{ A} \cdot 600 = 6 \text{ ac}$

