February 13, 2020

Work and Energy

Work:

1) Product of a force and the component of the displacement in the direction of the force.
2) Product of a displacement and the component of the force in the direction of the displacement.

Formula:

$$
\begin{aligned}
W & =\vec{F} \cdot \stackrel{\rightharpoonup}{F} \\
& =F \cdot d \cdot \cos \theta
\end{aligned}
$$

$$
w=\int \vec{F} \cdot d \vec{s}
$$

February 13, 2020

W	F	d	θ
work	Force	displacement	angle betwen $\stackrel{\rightharpoonup}{F} J_{0}$
$[N \cdot m]=[J]$	$[N]$	$[m]$	
scalar	vector	vector	

1. Work is a scalar but it can be positive or negative. Explain. Positive Work:
force and displacement are in same direction $\left(\theta=0^{\circ}\right)$

Negative Work:
force and displacement are in opposite directions ($\theta=180^{\circ}$)
2. Express the units for work in terms of fundamental units.

$$
[J]=[N \cdot m]=\left[\log \frac{m^{2}}{s^{2}}\right]
$$

Power:

a) the rate at which work is done
b) the rate at which energy is transferred or transformed

Formula:

Alternate Formula:

$$
P=F \cdot \bar{V}
$$

P	w	\mathbf{t}
power	work	time
$[J / s]=[W]$	$[J]$	$[s]$
scalar	scalar	scalar

1. Express the units for power in terms of fundamental units.

$$
[w]=\left[\operatorname{kg} m^{2} / s^{3}\right]
$$

2. A student drags a 20.0 kg box horizontally across the floor at a constant speed for a distance of 3.00 meters by applying a force of 100 . newtons for 8.0 seconds. Calculate how much work the student did and how much power was dissipated.

3. The student then lifts the same 20.0 kilogram box 1.50 meters straight up in the air in
4.0 seconds at a constant speed.
a) Calculate the work he did and the power he used.

NOTE: When lifting or lowering an object at a constant speed . . .
The applied force is equal to the force of gravity (weight) of the object.
b) A second student lifted the same box to the same height at a constant speed but in only 2.0 seconds. Compare the work she did and the power she generated to those of the first student.

300 J
150 W

4. If a child drags a 8.0 kilogram wagon for 10 . meters by using a force of 20 . newtons at an angle of $30 .^{\circ}$ with the horizontal, how much work does he do?

5. A student carries 150 . newtons worth of books 10 . meters up a flight of stairs which are inclined at an angle of 30° from the horizontal. How much work does he do?

FAd $\cdot \cos \theta$
$150 \mathrm{~N} \cdot 10 \mathrm{~m} \cos 60^{\circ}$
$=750 \mathrm{~J}$

6. How much work is done on a 120.-kilogram satellite as it orbits the Earth?
centripetal forces never do work

F is in, V is tangent

Efficiency:

the ratio of the amount of useful work done to the amount of total work done

Formula:

