Newton's Law of Universal Gravitation

Law of Universal Gravitation:

Every object attracts every other object with a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between them.

Published in: The Principia

a) What will	happen?	Fzont	ION	IONF	
move to	gether w/incre			100	2
	ll #1 pulls on ba #2 pull on baske		a force of 10. N,	how strongly does	
c) Explain thi	s behavior using	g one of Newton's	s laws of motion	lan	
d) Compare th	ne accelerations	of the two basket	balls.		
same		F=ma			

1. Calculate the gravitational force of attraction between a basketball and a bowling ball that are m=.625kg m=5.00kg 1.50 meters apart. $F_{g} = \frac{GMm}{c^{2}}$ $= \frac{6.67 \times 10^{-11} N \frac{m^2}{15 m^2} \cdot 5 kg \cdot 625 kg}{(1.5 m)^2} \sim 9.3 \times 10^{-11} N$ 2. Calculate the force holding the Moon in orbit around the Earth. m~1022 m~1024

3. a) Calculate the gravitational force of attraction between you and the Earth. Fg = GMEMme r² $\frac{6.67 \times 10^{-11} \text{ m}^2}{6.637 \times 10^{-10} \text{ m}^2} = \frac{5.97 \times 10^{-10} \text{ kg}}{6.637 \times 10^{-10} \text{ m}^2}$ b) For an object on or near the surface of a planet \ldots $\beta_{\rho} \sim \gamma$ c) What is another name for this force? Demonstrate this. $F_{g} = mg$ 70kg (9.8m/2) = 686N

4. a) What is the gravitational force of attraction between a 60. kilogram student and the Earth if the student is in a plane at an altitude of 6.37 x 10 ⁶ m?
<u>686N</u> 4
b) When an object is above the surface of a planet $\Gamma = R_p + \alpha I + J J J J J J J J J J J J J J J J J J$
c) How could your answer to (a) be arrived at by proportional reasoning?
$\propto \frac{1}{\gamma^{2}}$

- 2. The International Space Station (ISS) orbits at an average altitude of 340 kilometers. How strong is the Earth's gravitational field at this altitude?
 - $r = R_{E} + a l t.$ = 6.37×10m + 0.34×10m = 6.71×10m

3. Planet X has the same mass as Earth but only half the diameter. What is the gravitational field strength on the surface of this planet?

$$4g = \frac{GM}{(\frac{1}{2}R)^2}$$

February 7, 2020

