Newton's Law of Universal Gravitation

Law of Universal Gravitation:
Every object attracts every other object with a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between them.

Published in: The Principia

Two identical basketballs are floating in deep space.
a) What will happen?

move together w/increasing accl
b) If basketball \#1 pulls on basketball \#2 with a force of 10 . N , how strongly does basketball \#2 pull on basketball \#1?
c) Explain this behavior using one of Newton's laws of motion.

d) Compare the accelerations of the two basketballs.
same

$$
F=m a
$$

Basketball \#2 is now replaced with a bowling ball.

200 N

e) If the mass of the bowling ball is approximately 20 times the mass of the basketball, how strong is the new force pulling on basketball \#1?
f) How much force does the basketball exert on the bowling ball?
g) Compare the accelerations of the two balls.

$$
\begin{aligned}
& \text { Fis same } \\
& m=a
\end{aligned}
$$

1. Calculate the gravitational force of attraction between a basketball and a bowling ball that are 1.50 meters apart.

$$
m=625 \mathrm{~kg} \quad m=5.00 \mathrm{~kg}
$$

$$
\begin{aligned}
F_{g} & =\frac{G M m}{r^{2}} \\
& =\frac{6.67 \times 10^{-11} \mathrm{~N} \frac{\mathrm{~m}^{2}}{\mathrm{~kg}^{2}} \cdot 5^{(1.5 \mathrm{~kg})^{2}} \cdot 625 \mathrm{~kg} \approx 9.3 \times 10 \mathrm{~N}}{}=\frac{11}{}
\end{aligned}
$$

2. Calculate the force holding the Moon in orbit around the Earth.

$$
\begin{aligned}
& m \sim 10^{22} \\
& \eta^{2} \sim 10^{24}
\end{aligned}
$$

3. a) Calculate the gravitational force of attraction between you and the Earth.

$$
\begin{aligned}
F_{g} & =\frac{G M_{E} M_{m e}}{r^{2}} \\
& =\frac{6.67 \times 10^{-11} \mathrm{~N}^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~kg}^{2}} 5.97 \times 10^{24} \mathrm{~kg}}{\mathrm{~F}^{2}} 70 \mathrm{~kg}
\end{aligned}
$$

b) For an object on or near the surface of a planet... $R_{p} \sim r$
c) What is another name for this force? Demonstrate this.

$$
F_{y}=\operatorname{mog}_{70 \mathrm{~kg}} 9.8 \mathrm{~m} / \mathrm{s}=686 \mathrm{~N}
$$

4. a) What is the gravitational force of attraction between a 60 . kilogram student and the Earth if the student is in a plane at an altitude of $6.37 \times 10^{6} \mathrm{~m}$?

b) When an object is above the surface of a planet...r $r=R_{p}+\alpha \mid t_{1} t_{v} d_{l}$
c) How could your answer to (a) be arrived at by proportional reasoning?

$$
\alpha \frac{1}{r^{2}}
$$

Variable	Fg	G	g
Quantity	weight Force of grav.	univesas Grav. Constent	accl.due to grov Grav. field strength
Units	[N]	$\left[N m^{2} / 1 \mathrm{Kg}{ }^{2}\right]$	$\left[\mathrm{m} / \mathrm{s}^{2}\right]$ or $[\mathrm{N} / \mathrm{kj}]$
Type	Vector	scalor	vector
Property	Varies	same ever yuhere	varies

1. Calculate the Earth's gravitational field strength:

a) at the surface of Earth.
b) at an altitude equal to one Earth radius.

$\stackrel{\rightharpoonup}{g} \alpha \frac{1}{r^{2}}$

2. The International Space Station (ISS) orbits at an average altitude of 340 kilometers.

How strong is the Earth's gravitational field at this altitude?

$$
\begin{aligned}
r & =R_{E}+a 1 t \\
& =6.37 \times 10^{6} \mathrm{~m}+0.34 \times 10^{6} \mathrm{~m} \\
& =6.71 \times 10^{6} \mathrm{~m}
\end{aligned}
$$

3. Planet X has the same mass as Earth but only half the diameter. What is the gravitational field strength on the surface of this planet?

$$
4 g=\frac{G M}{\left(\frac{1}{2} R\right)^{2}}
$$

	Satellites	IB 11
Satellite:		
an object that orbits another object Natural Satellites		

1. How can an object become a satellite?
if it moves fast enough forward so that the Earth curves away underneath it at the same rate as it falls
2. What keeps a satellite up?
nothing! it keeps falling, just moving sideways fast enough
3. Why doesn't the Moon fall into the Earth as an apple does?
large enough tangential vel.

$$
\begin{aligned}
& g=9.8 \mathrm{~m} / \mathrm{s}^{2} \\
& a=\frac{v^{2}}{r}
\end{aligned}
$$

$$
V=\sqrt{r g}
$$

$$
=\sqrt{6.37 \times 10^{6} 9.8 \mathrm{~m} / \mathrm{s}^{2}}
$$

