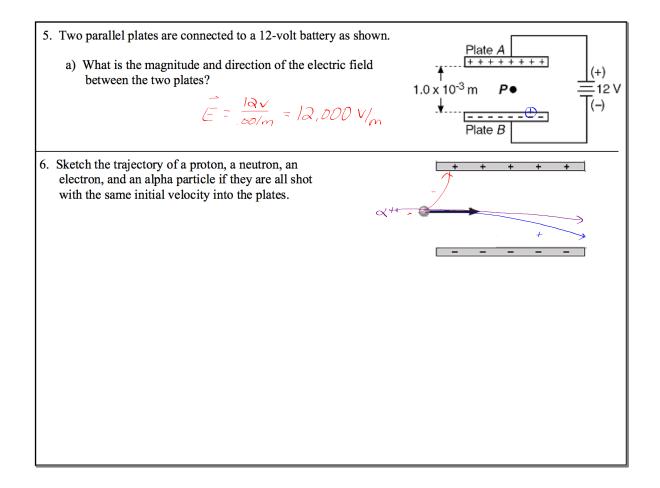

Electronvolt: the amount of energy gained (or work done) moving			
an electron through a potential difference of one volt			
3. Determine the conversion factor between joules and electronvolts.			
$le.V_{1} = 1.6 \times 10^{-19}$			
4. An external force does 4.0 eV of work moving an electron between two points in an electric field. How much energy in joules does the electron gain?			
$4.0eV \times \frac{1.6 \times 10^{-19}}{eV} = 6.4 \times 10^{-19} \text{J}$			
5. A proton falls through a potential difference of 30. Volts. How much kinetic energy does the proton gain? Express your answer in both joules and electronvolts.			



2. A positive test charge is placed at each of three loo two charged metal parallel plates: A, B, and C.	cations between + + + +
a) At which location is the electric force on the tes same	st charge greatest?
b) At what location is the electric field strongest?	$\vec{F}_{=}q\vec{E}$ $\begin{bmatrix} \end{bmatrix}$
same c) If the charge of the test charge is doubled, what	t effect will this have on the: f
i) electric field?	ii) electric force?
none	

3. Draw the electric field between two charged metal parallel plates. $\frac{1}{50}++++++++++++++++++++++++++++++++++++$	4. The electric potential difference between these plates is 100 volts.a) Which plate is at a higher electric potential? Why?
Uniform field:	b) What is the electric potential of each plate?
Edge effects:	

February 5, 2020

Variable:	Parallel Plate Formulas:Electric Field: $\mathcal{E} = \sqrt{2}$ Potential difference:				
variable.	V	Е	d		
Quantity:	pol, difference	Electric Field	distanle		
Units:	V = J/c	$\left[\mathcal{N}_{\mathcal{L}} \right] = \left[\mathcal{N}_{\mathcal{H}} \right]$	(m)		
Type: 5	scalar	vector			

February 5, 2020

7.	a) At point X, draw and label a the electric field from the					
	b) At point X, draw and label a	vector to represent the electric force o	n freedom and the second			
	i) a proton	ii) an electron				
	c) Compare the electric force of	n the proton and electron. F = 9E	+ + + + +			
		erations of the proton and electron.				
	$\mathbb{M}_{p} \sim 100$	\mathcal{O}_{e}^{-} \mathcal{O}_{e}^{-} \mathcal{O}_{e}^{-} \mathcal{O}_{e}^{-}	\mathcal{D}^+			
	e) An alpha particle is placed a	t point X. What is an alpha particle?	\sim ++			
	f) Compare the alpha particle to a proton. Compare the: $2p+2n^{\circ}$ (X^{++})					
	i) charge ii) mass	iii) force on each	iv) acceleration of each			
	$\Delta x \sim 4x$	2F=29 E	$\frac{1}{2}\alpha \frac{2F}{4m}$			

8. A proton is released from rest at the positive plate.
a) How fast will it be traveling when it strikes the negative plate?

$$\begin{aligned}
F = q E = \frac{1.6 \times 10^{-1} c}{2} + \frac{1.2000 c}{5} & E = \frac{1.0}{2} \\
z = \frac{1.9 \times 10^{-15} c}{1.67 \times 10^{-15} c} = \frac{1.14 \times 10^{12} c}{1.67 \times 10^{-15} c} = \frac{1.14 \times 10^{12} c}{1.67 \times 10^{-15} c} \\
z = \frac{1.9 \times 10^{-15} c}{1.67 \times 10^{-15} c} = \frac{1.14 \times 10^{12} c}{1.67 \times 10^{-15} c} = \frac{4.8 \times 10^{12} c}{1.67 \times 10^{-15} c} \\
z = \sqrt{\frac{2}{5} + 2.2 c} = \sqrt{\frac{2}{2} + 1.14 \times 10^{12} c} \\
z = \sqrt{\frac{2}{5} + 2.2 c} = \sqrt{\frac{2}{2} + 1.14 \times 10^{12} c} \\
z = \sqrt{\frac{2}{5} + 2.2 c} = \sqrt{\frac{2}{2} + 1.14 \times 10^{12} c} \\
z = \sqrt{\frac{2}{5} + 2.2 c} = \sqrt{\frac{2}{2} + 1.14 \times 10^{12} c} \\
z = \sqrt{\frac{2}{5} + 2.2 c} = \sqrt{\frac{2}{5} + 2.2 c} \\
z = \sqrt{\frac{2}{5} + 2.2 c} = \sqrt{\frac{2}{5} + 2.2 c} \\
z = \sqrt{\frac{2}{5} + 2.2 c} = \sqrt{\frac{2}{5} + 2.2 c} \\
z = \sqrt{\frac{2}{5} + 2.2 c} = \sqrt{\frac{2}{5} + 2.2 c} \\
z = \sqrt{\frac{2}{5} + 2.2 c} = \sqrt{\frac{2}{5} + 2.2 c} \\
z = \sqrt{\frac{2}{5} + 2.2 c} = \sqrt{\frac{2}{5} + 2.2 c} \\
z = \sqrt{\frac{2}{5} + 2.2 c} = \sqrt{\frac{2}{5} + 2.2 c} \\
z = \sqrt{\frac{2}{5} + 2.2 c} = \sqrt{\frac{2}{5} + 2.2 c} \\
z = \sqrt{\frac{2}{5} + 2.2 c} = \sqrt{\frac{2}{5} + 2.2 c} \\
z = \sqrt{\frac{2}{5} + 2.2 c} = \sqrt{\frac{2}{5} + 2.2 c} \\
z = \sqrt{\frac{2}{5} + 2.2 c} = \sqrt{\frac{2}{5} + 2.2 c} \\
z = \sqrt{\frac{2}{5} + 2.2 c} = \sqrt{\frac{2}{5} + 2.2 c} \\
z = \sqrt{\frac{2}{5} + 2.2 c} = \sqrt{\frac{2}{5} + 2.2 c} \\
z = \sqrt{\frac{2}{5} + 2.2 c} = \sqrt{\frac{2}{5} + 2.2 c} \\
z = \sqrt{\frac{2}{5} + 2.2 c} = \sqrt{\frac{2}{5} + 2.2 c} \\
z = \sqrt{\frac{2}{5} + 2.2 c} = \sqrt{\frac{2}{5} + 2.2 c} \\
z = \sqrt{\frac{2}{5} + 2.2 c} = \sqrt{\frac{2}{5} + 2.2 c} \\
z = \sqrt{\frac{2}{5} + 2.2 c} = \sqrt{\frac{2}{5} + 2.2 c} \\
z = \sqrt{\frac{2}{5} + 2.2 c} = \sqrt{\frac{2}{5} + 2.2 c} \\
z = \sqrt{\frac{2}{5} + 2.2 c} = \sqrt{\frac{2}{5} + 2.2 c} \\
z = \sqrt{\frac{2}{5} + 2.2 c} = \sqrt{\frac{2}{5} + 2.2 c} \\
z = \sqrt{\frac{2}{5} + 2.2 c} = \sqrt{\frac{2}{5} + 2.2 c} \\
z = \sqrt{\frac{2}{5} + 2.2 c} = \sqrt{\frac{2}{5} + 2.2 c} \\
z = \sqrt{\frac{2}{5} + 2.2 c} = \sqrt{\frac{2}{5} + 2.2 c} \\
z = \sqrt{\frac{2}{5} + 2.2 c} = \sqrt{\frac{2}{5} + 2.2 c} \\
z = \sqrt{\frac{2}{5} + 2.2 c} = \sqrt{\frac{2}{5} + 2.2 c} \\
z = \sqrt{\frac{2}{5} + 2.2 c} = \sqrt{\frac{2}{5} + 2.2 c} \\
z = \sqrt{\frac{2}{5} + 2.2 c} = \sqrt{\frac{2}{5} + 2.2 c} \\
z = \sqrt{\frac{2}{5} + 2.2 c} = \sqrt{\frac{2}{5} + 2.2 c} \\
z = \sqrt{\frac{2}{5} + 2.2 c} = \sqrt{\frac{2}$$