Circular Motion and Gravity

Uniform Circular Motion: motion in a circle at a constant speed
Cycle: one complete revolution

Period: time for one cycle
Symbol: $\mp \quad$ Formula for Period:
Units:
 $=\frac{\text { time }}{\text { cycle }}$

Which path will the marble take? Why? Explain using one of Newton's Laws.

Newton's 1st law - object in motion (constant) stays in motion

Centripetal Force and Acceleration

Centripetal Force: a force acting toward the center of the

NOTE: The phrase "centripetal force" does not denote a new and separate force of nature. The phrase is merely another name for the net force pointing toward the center of the circular path. The centripetal force always has another name, such as $\mathrm{F}_{\mathrm{g}}, \mathrm{F}_{\mathrm{N}}, \mathrm{F}_{\mathrm{T}}, \mathrm{F}_{\mathrm{f}}$, or any combination of these.

Centripetal force:

How is the acceleration of a car related to the forces you feel as a rider in the car?

Centrifugal force: perception of outward force due to accl F.O.R.

A car traveling down the road makes a quick left-hand turn. Explain, using Newton's laws and a different frame of reference, how any "centrifugal" force you feel can be explained as a centripetal force.

Centripetal Acceleration \quad Centripetal Force \quad Centripetal Force is the Net Force!

1. A boy flies a $0.750-\mathrm{kg}$ motorized plane on a 2.3 m string in a circular path. The plane goes around 8.0 times in 12.0 seconds. Determine the following:
a) the period of revolution

$$
T=\frac{\text { time }}{c_{y c k}}=\frac{12 s}{8.0}=1.5 \mathrm{~s}
$$

b) the speed of the plane
c) the acceleration of the plane

$$
\begin{aligned}
& \vec{a}_{i n}=\frac{v^{2}}{r} \frac{(9.6 m \mathrm{~m})}{2.3 m} / T=t_{\text {imel/ycle }} \\
& =40 . \mathrm{m} / \mathrm{s}^{2} \\
& \text { d) the tension in the string }(F \cdot n)
\end{aligned}
$$

2. A 1.5 kilogram toy car moves on a circular track of 1.3 meter radius at a constant speed of 2.0 meters per second. Determine the following:
a) the time it takes to go around the track once
c) the centripetal force acting on the cart

b) the centripetal acceleration of the cart

d) What is causing this force?

$\left\{\begin{array}{l}T=\text { time } / \text { cycle } \\ V=2 \pi r / T \\ a_{i n}=v^{2} / \sigma \\ S \vec{F}_{i n}=m v^{2}\end{array}\right.$
3. A 2000. kg car attempts to turn a corner going at a speed of $25 \mathrm{~m} / \mathrm{s}$. The radius of the turn is 15 meters.
a) How much friction is needed to negotiate this turn successfully?

b) If the pavement is dry asphalt, will the car be able to safely turn? Justify your answer.
c) Derive an expression for the maximum speed with which a car of mass m can safely make a turn around a curve of radius r.
