Conservation of Electric Charge

Principle of Conservation of Electric Charge

The total electric charge of an isolated system remains constant.

Method of finding final charge

If objects are identical, final charge on each is the average charge (total charge divided by number of objects)

Experimental data showed the following two relationships:

Formula: $F_{e}=\frac{k q_{2} q_{2}}{r^{2}}$

separation

Relationship:

Electrostatic Constant (Coulomb's constant):

Coulomb's Law: The electrostatic force between two charged objects is directly proportional to the product of the two charges and inversely proportional to the square of the distance between their centers and acts along a line joining their centers.

The Electrostatic Force

1. A proton and an electron are placed 1.0×10^{10} meter apart.
a) Calculate the Coulomb force of attraction between them.

NOTE: ${ }^{\text {neglect }+/ \text { - on charges - formula uses magnitude only }}$

The Electrostatic Force

1. A proton and an electron are placed 1.0×10^{10} meter apart.
b) Calculate the gravitational force of attraction between them.

c) Compare the strengths of the two forces.
2. Sketch the directions of the electrostatic forces and the gravitationa forces in each pairing below.

(neutron)

Coulomb's Laws Practice

3. In the Bohr model of the hydrogen atom, the electron (-e) is in orbit about the nuclear proton $(+\mathrm{e})$ at a radius of $\mathrm{r}=5.29 \times 10^{1} \mathrm{~m}$. Determine the speed of the electron, assuming the orbit to be circular.

$$
\begin{aligned}
& \sum F=m a \\
& \frac{K Q Q}{r^{2}}=m \frac{v^{2}}{r} \\
& v=\sqrt{\frac{K Q Q}{r m}}=2.2 \times 10^{6} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Coulomb's Laws Practice

4. Three charges are placed along a line at the positions indicated. What is the net force on charge q ?

Coulomb's Laws Practice

5. The three charges are now placed at right angles, as shown. What is the net force on charge q?

Electric Fields

Electric field: a region in space surrounding a charged object in which a second charged object experiences an electric force

Test charge: a small positive charge used to test electric fields (small enough that its charge does not distort field it's testing)

Electric Field Diagrams

1. Electric field around a positively charged object

The electric field from an isolated positive charge
2. Electric field around a negatively charged object

Electric Field Diagrams

3. Electric field around unlike charges

4. Electric field around two positive charges

Electric Field Diagrams

5. Electric field around two negative charges

6. Electric field between two oppositely charged parallel plates

Electric Field Diagrams

Properties of Electric Field Lines:

1) They show the direction of the resultant force on a small positive est charge (out of positive, into negative).
2) They never cross since this would indicate that the resultant forceis in two different directions at once.
3) The direction of the electric field at any point istangent to the field lines.
4) The density of the field lines is proportional to the strength ofthe field (density = intensity). The field is most intense where the field lines are most dense.

Electric Field Strength

Electric Field Strength (Intensity):

Electric force per unit charge exerted on a small positive test charge

Formula:

Alternate Formula for point charges:

Electric Field Strength

Variable:	F_{e}	E	$\mathrm{q}_{1}, \mathrm{q}_{2}$
Quantity:	Electrostatics Force	Electric Field	electric charge
Units:	$[N]$	$[N / C]$	$[C]$
Type:	vector	Vector	Scalar

1. What is the magnitude and direction of the electric field at a distance of 7.0 nm from a proton? Sketch a graph of the relationship between electric field strength and distance from the proton.

