Principle of Linear Superposition: When two or more waves meet, the displacement of the resultant wave is the vector sum of the displacements of the component waves.

Constructive Interference: superposition of two or more pulses (or waves) in phase
Pulses with equal amplitudes

Pulses with unequal amplitudes

Destructive Interference: superposition of two or more pulses (or waves) out of phase

Pulses with unequal amplitudes

Waves with equal amplitudes and wavelengths

Standing (stationary) wave - resultant wave formed when two waves of equal amplitude and frequency traveling in opposite directions in the same medium interfere

How is a standing wave on a string formed?

A traveling wave moving in one direction in the string is reflected off the end of the string. This sends a reflected wave traveling in the opposite direction in the string which is nearly identical with the first traveling wave. It has the same frequency, the same wavelength, and almost the same amplitude. These two traveling waves moving in opposite directions in the string are the component waves. These component waves interfere with each other creating the standing wave whose amplitude at any point is the superposition of the components' amplitudes. This standing wave is the resultant wave of the two component traveling waves.

Node: location of constant complete destructive interference

Anti-Node: location of maximum constructive interference

Traveling Wave
Comparison of travelling waves and stationary waves

Property	Travelling wave	Standing wave
energy transfer	energy is transferred in the direction of propagation	no energy is transferred by the wave although there is interchange of kinetic and potential energy within the standing wave
amplitude	all particles have the same amplitude	amplitude varies within a loop - maximum occurs at an antinode and zero at a node
phase	within a wavelength the phase is different for each particle	all particles within a "loop" are in phase and are antiphase (180 out of phase) with the particles in adjacent "loops"
wave profile [shape)	propagates in the direction of the wave at the speed of the wave	stays in the same position
wavelength	the distance between adjacent particles which are in phase	twice the distance between adjacent nodes [or adjacent antinodes]
frequency	all particles vibrate with same frequency.	all particles vibrate with same frequency except at nodes [which are stationary)

I. Transverse Standing Wave: string fixed at both ends

Boundary conditions: 2 fixed ends - node at each end

L

Notice that a stable standing wave will only occur at certain discrete frequencies or certain discrete lengths of the string. It is only at these frequencies or lengths that the wave resonates so they are called resonant frequencies or harmonics or resonant modes of vibration of the string. We say that these resonant frequencies are quantized.
Harmonics:

$\sigma_{n}=\frac{\curvearrowleft V}{2 L}$

What do you hear when a guitar (or piano, etc.) string is played?

A combination of resonant frequencies in different amounts (different amplitudes)

II. Longitudinal Standing Wave: pipe open at both ends

How is this standing wave formed? Vibrations of air at one end produce a traveling (longitudinal) wave that reflects off the open end of the pipe which causes a second traveling wave in the opposite direction. These two component waves interfere to produce a standing wave if they have a frequency which is one of the resonant frequencies of the pipe.

III. Longitudinal Standing Wave: pipe open at only one end
Boundary conditions: 1 fixed and one free end - one node and one anti-node

L

Harmonics:

$\lambda_{n}=\frac{4 L}{n}$

$$
n=1, \sum_{1} 5 \ldots
$$

Summary:

	Boundary conditions	First Harmonic (fundamental)	Resonant Wavelengths (higher harmonics)	Resonant Frequencies (higher harmonics)
String of length L	Both ends fixed or both ends free	$\begin{gathered} \mathrm{L}=1 / 2 \lambda_{1} \\ \lambda_{1}=2 \mathrm{~L} \end{gathered}$	$\lambda_{n}=\frac{2 L}{n}$ where $\mathrm{n}=1,2,3,4 \ldots$	$f_{n}=\frac{v}{\lambda_{n}}=\frac{n v}{2 L}$ where $\mathrm{n}=1,2,3,4 \ldots$
Pipe of length L	Both ends open or both ends closed			
String of length L	One end fixed, the other end free	$\begin{gathered} L=1 / 4 \lambda_{1} \\ \lambda_{1}=4 \mathrm{~L} \end{gathered}$	$\lambda_{n}=\frac{4 L}{n}$ where $\mathrm{n}=1,3,5,7 \ldots$	$f_{n}=\frac{v}{\lambda_{n}}=\frac{n v}{4 L}$ where $\mathrm{n}=1,3,5,7 \ldots$
Pipe of length L	One end open, the other end closed			

