2. A toy car moving at $2.0 \mathrm{~m} / \mathrm{s}$ runs off a table that is 1.3 m high .

Determine:
a) the time it takes for the car to hit the ground.

$$
t=\sqrt{\frac{2 \vec{d}_{y}}{\vec{a}_{1}}}=\sqrt{\frac{2 \cdot(-1.3 m)}{\left(-9.8 n / 3^{2}\right)}}=0.51 \mathrm{~s}
$$

b) how far from the table the toy car lands

	x	y
d	1.0 m	-1.3 m
t	$5 / \mathrm{s}$	51 s
a	0	$-9.8 \mathrm{~m} / \mathrm{s}$
v_{i}	$2 \mathrm{~m} / \mathrm{s}$	0
v_{f}	$2 \mathrm{~m} / \mathrm{s}$	$-5.0 \mathrm{~s} / \mathrm{s}$

3. Cliff divers jump from heights as high as 50 meters.

Suppose a diver wants to jump off a cliff that has rocks at the base that extend out for 23 m . Determine:
a) how long it will take to hit the water.

b) how fast the diver should run to clear the rocks below?

1. A baseball was thrown with a speed of $25.0 \mathrm{~m} / \mathrm{s}$ at an angle of 30.0°. Determine:
a) Horizontal and vertical components of the initial velocity

$$
\begin{array}{r}
V_{0 y}=V_{0} \sin \theta=25 \mathrm{~m} / \mathrm{s} \cdot \sin 30^{\circ} \\
=12.5 \mathrm{~m} / \mathrm{s}
\end{array}
$$

b) time taken to reach the top of its flight $\cos \theta=25 \mathrm{n} / \mathrm{s} \cdot \cos 30^{\circ}=21.7 \mathrm{~m} / \mathrm{s} 30^{\circ}$ of $t_{1 / 2} V_{f y}=0$

$$
2.54 \mathrm{~s} / 2=1.27 \mathrm{~s}
$$

c) total time before baseball lands

$$
\begin{aligned}
& \begin{array}{l}
d=\frac{v_{0, t} t+\frac{1}{2} a_{y} t^{2}}{t} \rightarrow 0 \\
t
\end{array} \\
& t=V_{0 y}+\frac{1}{2} a_{y} t \\
& t
\end{aligned}
$$

d) how high the ball went $\left.\begin{array}{rl}t_{1 / 2}\end{array} \quad d_{y}=V_{0 y} t+\frac{1}{2} a_{y} t^{2}=12.5 \mathrm{w} / \mathrm{s} \cdot 1.27 \mathrm{~s}+\frac{1}{2}(.9 .8 \mathrm{r} / \mathrm{s})(1.27 \mathrm{~s})^{2}\right)$

$$
\begin{aligned}
& \begin{array}{l}
t_{1 / 2} \quad d_{y}=V_{0 y} t+\frac{1}{2} a_{y} t^{2}=12 . \\
\text { how far away the ball landed } \\
d_{x}=V_{0 x} t+\frac{1}{2} a_{x} t^{2}
\end{array} \\
& =21.7 \mathrm{~m} / \mathrm{s} 2.54 \mathrm{~s}=55.1 \mathrm{~m}
\end{aligned}
$$

2. A cannon ball is shot at an angle of 65.0° with an initial speed of $330 . \mathrm{m} / \mathrm{s}$. Determine:
a) the components of its initial velocity
c) how far away it landed
(x)

$$
8480 \mathrm{~m}
$$

d) how high it went
(1)

$$
4560 \mathrm{~m}
$$

$d=v_{0} t+\frac{1}{2} a t^{2}$

$$
t=30 \mathrm{~S}
$$

3. The diagram below shows the trajectories of five identical cannonballs all launched with the same speeds but at different launch angles measured from the horizontal.

4. Which path shows the projectile having the
a) largest angle of launch? C
b) largest initial vertical component of velocity? ℓ
c) largest initial horizontal component of velocity? a
5. As the launch angle increases, what happens to the
a) initial velocity? sume
b) the components of the initial velocity? \quad y \quad Y
6. At what launch angle will the components of the initial velocity be equal? 45
7. What angle of launch will give the largest range? 45
8. Which two projectiles have the same range? 30.60^{\prime}
9. What angle of launch will give the longest time in the air (flight time)? 90°
10. What angle of launch will make the cannonball go the highest?o 0°

Cannonball	Launch Angle
a	30°
b	45°
c	60°
d	70°
e	90°

