

Projectiles Launched at an Angle

The opening kick-off of a football game is shown below.

- 1. max height at t 1/2
- $^{2.}$ range (d_x) at total time
- 3. break into X and Y components
- 4. const. velocity in X direction
- 5. const. accl in Y dir
- 6. at peak, $V_y = 0$

a) Horizontal and vertical components of the initial velocity

b) time taken to reach the top of its flight $\cos \theta = 25 \frac{1}{2} \cdot \cos 30 = 21.7 \frac{1}{2} \cdot 30^{\circ}$

et tuz	V _{fy} = 0	2.545/2 =	1.275
--------	---------------------	-----------	-------

total time before baseball lands

d= Vat+2at2 -	0 = Voy + 1/2 ay t
t	t = 7 Vo/20 = -12.5 m/s = 2.54s

- $\frac{1}{\sqrt{1 1.5 + \frac{1}{2}}} = \frac{\sqrt{1 1.5 + \frac{1}{2}}}{\sqrt{1 1.5 + \frac{1}{2}}} =$ d) how high the ball went
- e) how far away the ball landed dx= Vox + 201 x +2 = 21.7m/s. 2.54s = 55.1m

	^	У
d		0
t	2.545	2.545
a	0	-9.8-/52
37.	017/	17 521

- A cannon ball is shot at an angle of 65.0° with an initial speed of 330. m/s. Determine:

c) how far away it landed

The diagram below shows the trajectories of five identical cannonballs all launched with the same speeds but at different launch angles measured from the horizontal.

- 1. Which path shows the projectile having the

 - a) largest angle of launch?
 b) largest initial vertical component of velocity?
 c) largest initial horizontal component of velocity?
- 2. As the launch angle increases, what happens to the

a) initial velocity?	same
----------------------	------

b) the components of the initial velocity? $\begin{array}{c} \\ \\ \\ \end{array}$

- 3. At what launch angle will the components of the initial velocity be equal? 45
- 4. What angle of launch will give the largest range? 45
- 5. Which two projectiles have the same range?
- 6. What angle of launch will give the longest time in the air (flight time) ? 10
- 7. What angle of launch will make the cannonball go the highest?eq \mathfrak{g}

Cannonball	Launch Angle
a	30 ⁰
b	45 ⁰
c	60°
d	70°
e	90°