

4. When adding vectors ...
a) component vectors can be translated (moved) without changing magnitude or direction
bdomponent vectors can be placed in any order but must be placed head to tail
dhe resultant vector is drawn from the tail of the first vector to the head of the last vector
d) if the component vectors form a closed figure, there is no resultant.
5. A resultant vector is determined by finding its magnitude and direction
6. Which angle represents the direction of the resultant vector?
angle at origin
7. Compare the placement of the component vectors with the placement of the resultant vector.

Component vectors: tip to tail
Resultant vector: start to end

Concurrent Vectors

Concurrent Vectors:

> component vectors that are placed tail to tail (or head to head)

Sketch the resultant of the concurrent vectors below.

Conclusion:
Concurrent vectors must be placed head to tail first (in any order) before the resultant can be found. (vector slide)

3. Two forces of 12 N and 4 N act concurrently on an object. What are the possible values for the resultant force?
Sketch vector diagrams to support your answer.
http://www.walter-fendt.de/ph11e/resultant.htm http://physics.bu.edu/~duffy/java/VectorAdd.html

Resolving a Vector into Components

1. Prof. Einstein walked 13.6 m in a direction 55.0° north of east as shown.
a) How far did he travel north?
b) How far did he travel east?

Mathematical Method

$\cos \theta=\frac{a d j}{h y p} \cos \theta=\frac{d x}{d}$

$\sin \theta=\frac{d y}{d}$
$\begin{aligned} d_{1} & =d \sin \theta \\ & =13.6 \mathrm{~m} \sin 65 \\ & =11.1 \mathrm{~m}\end{aligned}$
2. A plane attempting to head due north is experiencing a westward crosswind. The resultant velocity is that the plane is heading 40.0° north of west at a speed of $300 \mathrm{~m} / \mathrm{s}$.
a) Draw the resultant velocity vector using the scale of $1.0 \mathrm{~cm}=50 \mathrm{~m} / \mathrm{s}$.
b) Determine the component velocities (i.e. the plane's speed and the wind's speed) using the graphical method and the mathematical method.

3. A cannonball is launched with a speed of $450 \mathrm{~m} / \mathrm{s}$ at an angle of 35° above the horizontal.
a) Sketch an appropriate vector diagram showing the resultant velocity and its horizontal and vertical components. (Diagram does not need to be drawn to scale but should be roughly to scale.)
b) Calculate the horizontal and vertical components of the cannonball's velocity.
4. A person drags a crate across the floor with a force of $200 . \mathrm{N}$ at an angle of $20 .^{\circ}$ above the horizontal as shown (not to scale).
a) Sketch an appropriate vector diagram showing the horizontal and vertical components of the force.
b) As the angle of the force increases, what will happen to the:
i) resultant force?

ii) horizontal component of the force?
iii) vertical component of the force?

