\qquad

Show work on all problems. Basic equations, numbers with units, answers to correct (3) sig. figs in boxes provided.
\#1) Determine the angle the light path takes in the material as shown. Note: Indices are in the text. Also, not all interfaces are horizontal. The dotted lines are the normal lines.

\#2) Calculate the critical angle for the light passing between glass and water. On the drawing, sketch a ray of light moving at the critical angle of incidence in the proper direction and show clearly where that light goes after hitting the interface.

Glass/water

Work:
sketch:

\qquad Per: \qquad Refraction and Total Internal Reflection

1) Calculate the angles and draw the rays for each of the $\left(\begin{array}{l}\mathrm{air} \\ n=1.00\end{array}\right.$ following situations:
a. A ray leaves the source, striking the surface at an angle of 10.0°. Calculate the angle of refraction. Draw the refracted ray.
b. A ray leaves the source, striking the surface at an angle of 30.0°. Calculate the angle of refraction. Draw the refracted ray.

c. A ray leaves the source, striking the surface at an angle of 50.0°. Calculate the angle of refraction. Draw what happens.
d. Calculate the critical angle for this situation. Draw it on the diagram above.
2) Calculate and draw, (using a straight edge) the path of the light ray below, continuing it until it emerges from the glass.
a. going into the glass
b. going through the glass. (bint: draw the normal line where the ray touches the interface)
c. coming out of the glass; calculate the angle of the emergent ray and put that number on your diagram below.

