Plane Mirrors

A laser pointer is aimed at the surface of a plane mirror. Use a straight-edge to construct the laser beam after it reflects from the mirror.
Plane Mirror: flat mirror
Normal:line perpendicular to surface
Angle of reflection: angle between reflected ray and normal
Angle of incidence: angle between incident ray and normal

Law of Reflection

The angle of incidence is equal to the angle of reflection

$$
\theta_{i}=\theta_{r}
$$

Properties of Images formed by Plane Mirrors

Each object below is in front of a plane mirror (seen on edge). Sketch the image that you would see in each case if you were looking into the mirror. Then, check your result by placing a plane mirror on top of this page at each location and looking into it.

What are some properties of images formed by plane mirrors?

> 1.upright
4. Orientation is reversed 5. virtual
same distance away from mirror

Virtual Image:
an image formed by light rays that only appear to intersect (converge) but do not actually intersect
Curved Mirrors
Source of Parallel Rays:
very distant object
Method of locating focal point:
allow light from distant object to
come into focus on a screen
Centipal Axis diameter of Curvature (C): center of sphere
Radius of Curvature (R) radius of Sphere
Focal Point (F): point where rays parallel to principal axis cross
Focal Length (f):distance between focal point and mirror

Ray Tracing (3-Ray diagrams) to Locate Images

Ray \#1En parallel, reflects out through focal point
Ray \#2: In focus, reflects out parallel
Ray \#3: In to center reflects out from center

Image Properties

Case 1:

candle outside 2 f :
real, inverted, smaller

Image Properties
Case 2:
candle at 2f:
real, inverted, same size

Convex Mirror

1. Under what circumstances will a mirror form a real image?
2. Under what circumstances will a mirror form a virtual image?
