

Significant Figures, Decimal Places, and Scientific Notation

Decimal places - the number of digits after the decimal point
Significant figures (digits) -the digits that are known with certainty plus one digit whose value has been estimated in a measured value.

Measurement	Decimal Places	Significant Figures	Scientific Notation
4003 m		4	$4.003 \times 10^{3} \mathrm{~m}$
160 N		2	$1.6 \times 10^{2} \mathrm{~N}$
160 N		3	$1.60 \times 10^{2} \mathrm{~N}$
30.00 kg	2	4	$3.000 \times 10^{1} \mathrm{~kg}$
000610 m	5	3	$6.1010^{-3} \mathrm{~m}$

Rules for determining significant figures:

1) Nonzero digits in a measurement are always significant.
2) Zeros that appear before a nonzero digit are NOT significant.
$E x-0.002 \mathrm{~m}$ (1 significant figure) and 0.13 g (2 s.f.).
3) Zeros that appear between nonzero digits are significant. $\mathrm{Ex}-0.705 \mathrm{~kg}$ (3 s.f.) and 2006 km (4 s.f.).
4) Zeros that appear after a nonzero digit are significant only if:
(a) followed by a decimal point

$$
E x-40 \mathrm{~s}(1 \mathrm{~s} . \mathrm{f} .) \text { and } 20 . \mathrm{m}(2 \text { s.f. }) \text {. }
$$

(b) they appear to the right of the decimal point.
$E x-37.0 \mathrm{~cm}$ (3 s.f.) and 40.00 m (4 s.f.).

Calculations with Significant Figures

Addition and Subtraction Rule

match decimal place
When adding or subtracting measured values, the operation is performed and the answer is rounded to the same decimal place as the value with the fewest decimal places.

Multiplication and Division Rule
match \# of sig figs
When multiplying or dividing measured values, the operation is performed and the answer is rounded to the same number of significant figures as the value having the fewest number of significant figures.

Perform the following calculations and answer to the correct number of sig figs:
a) $\quad 11.44 \mathrm{~m}$
5.00 m
0.11 m
$+\frac{13.2 \mathrm{~m}}{29.75}$
$\rightarrow 29.8 \mathrm{~m}$
b) Add $2.34 \mathrm{~m}, 35.7 \mathrm{~m}$ and 24 m

62 m
c) $(0.304 \mathrm{~cm})(73.84168 \mathrm{~cm})$
$\begin{aligned} & 22.4477 \ldots \mathrm{~cm}^{2} \\ \rightarrow & 22.4 \mathrm{~cm}^{2} \\ \text { d) } & 0.1700 \mathrm{~g} \div 8.50 \mathrm{~L}\end{aligned}$
d) $\frac{0.1700 \mathrm{~g} \div 8.50 \mathrm{~L}}{.0200 \mathrm{~g} / \mathrm{L} \text { or } 2.00 \times 10^{-2} \mathrm{~g} / \mathrm{L}, ~}$
d) $\frac{0.1700 \mathrm{~g} \div 8.50 \mathrm{~L}}{.0200 \mathrm{~g} / \mathrm{L} \text { or } 2.00 \times 10^{-2} \mathrm{~g} / \mathrm{L}, ~}$

Fundamental and Derived Units

The SI (International System) system of units defines seven fundamental units from which all other units are derived.
For example:
The meter is the length of the path traveled by light in vacuum during a time interval of $1 / 299792458$ of a second.
The second is the duration of 9192631770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the cesium 133 atom.

Fundamental Units

Quantity	Units	Symbol
Length	meter	$[\mathrm{m}]$
Mass	kilogram	$[\mathrm{kg}]$
Time	second	$[\mathrm{s}]$
Electric current	Ampere	$[A]$
Temperature	Kelvi	$[k]$
Amount	mole	$[m o l]$
Luminous intensity	candela	$[c d]$

Derived Units
New (derived) units can be named by combining the
What is the derived unit for mass per length? $[\mathrm{Kg} / \mathrm{m}]$
b) What is the derived unit for electric current times time? $[A \cdot S$
c) What is the derived unit for mass times length per time $\left[\operatorname{lgg} \frac{\mathrm{m}}{\mathrm{s}}\right]$

Note: Sometimes a derived unit will have a new name.
For example, $\left[\operatorname{Kg} \frac{m}{s^{2}}\right]=[N]$

Metric Prefixes and Conversions

Prefixes for Powers of Ten		
PREFIX SYMBOL NOTATION		
tera	T	10^{12}
giga	G	10^{9}
mega	M	10^{6}
kilo	k	10^{3}
deci	d	10^{-1}
centi	c	10^{-2}
milli	m	10^{-3}
micro	μ	10^{-6}
nano	n	10^{-9}
pico	p	10^{-12}

1. Convert 45.20 centimeters into meters.

Factor-Label Method for Converting Units

a) Write factors so units cancel leaving desired units.
b) Write " 1 " next to each prefixed unit.
c) Write the power of 10 (i.e.- the exponent) with each base unit.
2. Convert 1.9 A into microamps.
3. Convert 0.0340 pm into kilometers.

$$
.0340 \text { pm }\left(\frac{10^{-12} m}{1 \text { pm }}\right)\left(\frac{1 \mathrm{~km}}{10^{3} m}\right)=.0340 \times 10^{-15} \mathrm{~km}
$$

4. Convert $12.8 \mathrm{~cm}^{2}$ into m^{2}.
5. Convert $4700 \mathrm{~kg} / \mathrm{m}^{3}$ into $\mathrm{g} / \mathrm{cm}^{3}$

6. Convert 55 mph into m / s. $(1.0 \mathrm{mile} \approx 1.6 \mathrm{~km})$
