Compare the following locations.

	Air Resistance	Gravity
Earth	_	/
Moon		✓
Deep Space		

Acceleration due to Gravity

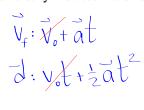
		_
1.	symbol	'q'

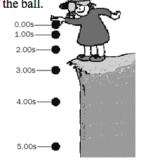
4. varies by planet

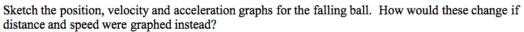
Selected Values of "g"

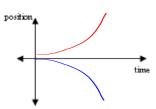
Eugene
$$g = 9.81 \text{ m/s}^2$$

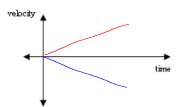
Equator
$$g = 9.75 \text{ m/s}^2$$

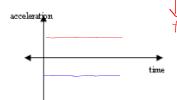

North Pole
$$g = 7.83 \text{ m/s}^2$$

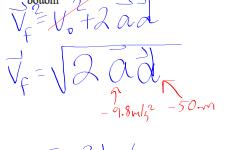

Moon
$$g = 1.6 \text{ m/s}$$


Mars
$$g = 3.7 \text{ m/s}^2$$


Complete the chart for the displacement, instantaneous velocity and acceleration of the ball.


time (s)	d (m)	v (m/s)	a (m/s²)
0	0	0	10
1	-5	-10	- 10
2	-20	-20	- 10
3	-45	-30	- 10
4	-8D	-40	- 10
5	-125	-50	~10





- A ball is dropped down a shaft and hits the bottom in 3.2 seconds. Determine:
 - a) the depth of the shaft

$$t=3.2s$$
 $a:-9.8m/s^2 = -5D.m$
 $V_0=0$
 $J=V_0+\frac{1}{2}at^2 = 4(-9.8m/s^2)(3.2s)$

b) how fast the ball is going when it hits the

- A stunt man jumps off the Brooklyn Bridge which is 40. meters high. Determine:
 - a) the time it takes to hit the water

2.9s

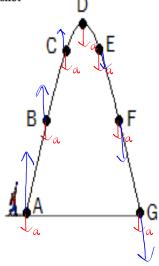
b) his impact velocity

28 m/s

Throwing Up

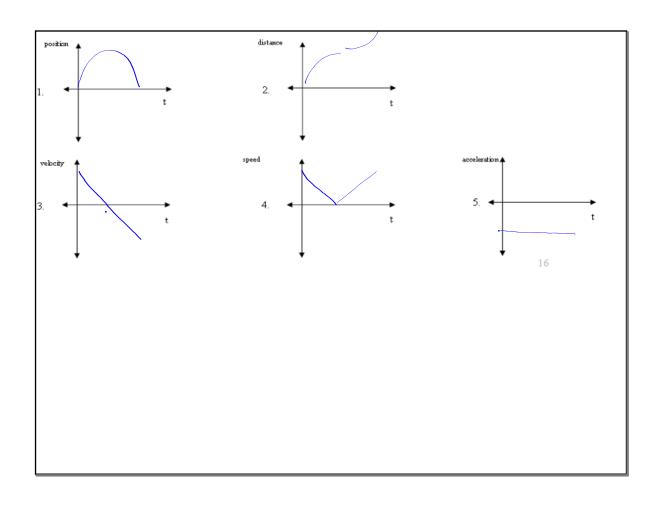
A ball is thrown up into the air, as shown in the time-elapsed diagram. Each snapshot represents the position of the ball after one additional second of flight.

a) How long is it in the air?



- b) How long did it take to get to the top of its path?
- c) How fast was it going when it left the ground? 30m/2
- d) Describe how its speed changes during the flight. slows, stops, speeds up
- e) Describe how its velocity changes during the flight.

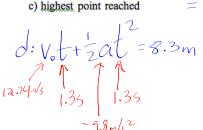
constantly decreases

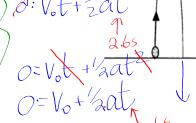

f) Describe how its acceleration changes during the flight.

constant

- g) Sketch vectors on the diagram to indicate the velocity and acceleration of the ball at each instant.
- h) Complete the chart at right for the ball.
- i) Sketch the graphs below for the ball.

	Position (m)	Velocity (m/s)	Acceleration (m/s ²)
A	0	30	-10
В	25	20	-10
С	40	10	-10
D	45	0	-10
Е	40	- 10	-10
F	25	- 20	-10
G	0	- 30	-10




- 1. A football is punted straight up and remains airborne for 2.6 seconds. Determine:
 - a) the time it takes to get to the top of its flight

b) vertical launching velocity

$$V_{e}=V_{o}+at$$
1.35

c) highest point reached

- 2. A ball is thrown straight up in the air with an initial velocity of 15 m/s. Determine:
 - a) the time it takes to get to the top of its flight

b) highest point reached

c) impact velocity $-15 \cdot m/6$