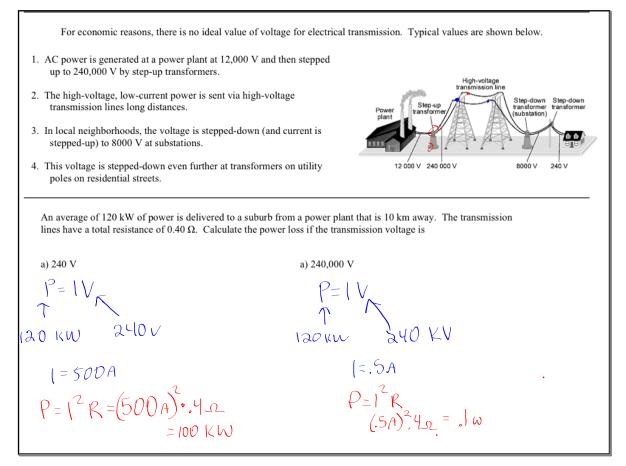

 $\mathbb{N}_{\varsigma} < \mathbb{N}_{\varsigma}$

b) How much voltage does the device need? 1000:50

c) If the current in the primary coil is 150 mA, how much current does the device use? Assume an ideal transformer. $P = \left| \bigvee_{e} = .15 \text{ OA} \cdot 120 \text{ V} - \frac{18 \text{ U}}{2} \right|$


 $\rightarrow V_{S} = \frac{50}{1000} |20 v = 6v$

 $P=1_{S}V_{S}=3A 6v = 18w$

ionization in the body	Health and Safety Concerns associated with High-Voltage Power Lines	
 Current research suggests that low-frequency fields do not harm genetic material. Individual photos of this frequency do not have enough energy ionization in the body deakemia clusters are suspected to have a link to living near overhead power cables The risks attached to the inducing of current in the human body are not well-understood. 	lines, induce currents within a human body. Just as AC can induce emfs and currents	s in secondary coils, so too can they be
 Individual photoms of this frequency do not have enough energy initiation in the body ad leademia clusters are suspected to have a link to living near overhead power cables The risks attached to the inducing of current in the human body are not well-understood. 	Changing magnetic field induces curren	it in human body
 The risks attached to the inducing of current in the human body are not well-understood. 	Hz individual photons of this frequency do not have enough energy	o not harm genetic material.
	ise ionization in the body ood leukemia clusters are suspected to have a link to living near overhead power cables	
	5	5

Power Transmission	IB 12
Power loss in transmission lines	
When current flows through a wire, some energy is lost to the surroundings as the wire collisions between the free electrons in the current and the lattice ions of the wire. This <i>heating</i> or <i>resistive heating</i> . Since the energy lost per second, or power loss, is proportion the current ($P = I^2 R$), this energy loss is also know as "I ² R loss."	s is known as Joule
Methods of reducing I ² R loss in power transmission lines	- \
1. Reduce resistance: thicker cables – low resistivity material $P =$	$IV = I^2 R = V^2 R$
Constraints: lengths are fixed, thicker cables are heavier and more expensive	
step voltage up to very 2. Increase voltage: high levels $2 \ge V = \frac{1}{2} \ge 1$	$I = \frac{1}{4} \times P$
high voltages are dangerous – must be stepped back Constraints: down for household use	

