

	Running from home to school	Round trip
Distance	1.2 mi	3.0 mi
Displacement	$\sim .8 \mathrm{mi}$	0
Speed	$12 \mathrm{miles} / \mathrm{min}$	$0.10 \mathrm{mile} / \mathrm{min}$
Velocity	$.08 \mathrm{miles} / \mathrm{min}$	0

3. When is the distance an object travels equal to its displacement (in magnitude)?
moving in straight line, without changing direction
4. When is the speed of an object equal to its velocity (in magnitude)?
moving in straight line, without changing direction
5. How can you drive at a constant speed but not at a constant velocity?
driving around curve
Average vs. Instantaneous
6. Average speed (or velocity):
speed or velocity averaged over some time
7. Instantaneous speed (or velocity): speed (or vel) at some instant
8. Describe a trip in which a car's average speed equals its instantaneous speed for the entire time.
if speed is constant

Acceleration

A cart is allowed to roll freely down a ramp, as shown below. The position of the cart is marked after each second.

increasing at increasing (square) rate
2. Describe any changes in the speed and velocity of the cart as it rolls downhill. increases directly

Instantaneous initial velocity $=\vec{V}_{0}$

