

Speed and Velocity

Speed (v): distance traveled per unit time

$$V = \frac{d}{t} = \frac{3m}{5s} = 0.6m/s$$

Velocity (v): rate of change of position (displacement per unit time) – speed + direction

time

Speed =
$$\frac{d}{t} = \frac{3m}{5s} = .6m/s$$

Velocity =
$$\frac{3.0m}{4.5m} = -.6m/s$$

- 1. If a person is moving in the positive direction, she has a
- + velocity, + displacement
- 2. If a person is moving in the negative direction, he has a . . .
- velocity, displacement

Time (s)	0	1	2	3	4
Displacement (m)	0	25	50	75	100
Velocity (m/s)	25	25	25	25	25

1. What does the slope of the position-time graph represent?

slope = velocity

2. What does the area under the velocity-time graph represent?

area = displacement

Essential idea: Some quantities have direction and magnitude, others have magnitude only, and this understanding is the key to correct manipulation of quantities

Magnitude: the value of a quantity (number and unit)

Scalar: a quantity that consists of magnitude only

Examples of scalar quantities: speed, distance, time, mass

Vector: a quantity that consists of magnitude and direction

Examples of vector quantities: displacement, velocity, acceleration, force

	Running from home to school	Round trip
Distance	1.2 mi	3.0mi
Displacement	~.8mi	0
Speed	.12 miles/min	o. lomile/min
Velocity	.08 miles/min	0

3. When is the distance an object travels equal to its displacement (in magnitude)?

moving in straight line, without changing direction

4. When is the speed of an object equal to its velocity (in magnitude)?

moving in straight line, without changing direction

5. How can you drive at a constant speed but not at a constant velocity?

driving around curve

Average vs. Instantaneous

Calculate your speed for a trip to Safeway.

Sketch a graph of your speed for your trip.

(s/m)
poods

Time (s)

- 1. Average speed (or velocity):
- 2. Instantaneous speed (or velocity):
- 3. Describe a trip in which a car's average speed equals its instantaneous speed for the entire time.