

Distance (d): the actual distance traveled by the object without regard to direction
Displacement $(\overrightarrow{\Delta \mathbf{x}}$ or $\overrightarrow{\mathbf{d}})$: the change in position of an object (distance traveled in a particular direction)

II.

Speed $=\frac{d^{-1.5 m}}{t}=\frac{3 \mathrm{~m}}{5 \mathrm{~s}}=.6 \mathrm{~m} / \mathrm{s} \quad$ Velocity $=\frac{d^{-}}{t}=\frac{-3 \mathrm{~m}}{5 \mathrm{~s}}=-.6 \mathrm{~m} / \mathrm{s}$

1. If a person is moving in the positive direction, she has a . . .

+ velocity, + displacement

2. If a person is moving in the negative direction, he has a ...

- velocity, - displacement
The following shows a car moving at a constant speed.

Time (s)	0	1	2	3	4
Displacement (m)	0	25	50	75	100
Velocity $(\mathrm{m} / \mathrm{s})$	25	25	25	25	25

1. What does the slope of the position-time graph represent? slope = velocity

2. What does the area under the velocity-time graph represent?
area $=$ displacement

Essential idea: Some quantities have direction and magnitude, others have magnitude only, and this understanding is the key to correct manipulation of quantities

Magnitude: the value of a quantity (number and unit)
Scalar: a quantity that consists of magnitude only
Examples of scalar quantities: speed, distance, time, mass
Vector: a quantity that consists of magnitude and direction
Examples of vector quantities:
displacement, velocity, acceleration, force

	Running from home to school	Round trip
Distance	1.2 mi	3.0 mi
Displacement	$\sim .8 \mathrm{mi}$	0
Speed	$12 \mathrm{miles} / \mathrm{min}$	$0.10 \mathrm{mile} / \mathrm{min}$
Velocity	$.08 \mathrm{miles} / \mathrm{min}$	0

3. When is the distance an object travels equal to its displacement (in magnitude)?
moving in straight line, without changing direction
4. When is the speed of an object equal to its velocity (in magnitude)?
moving in straight line, without changing direction
5. How can you drive at a constant speed but not at a constant velocity?
driving around curve

6. Average speed (or velocity):
7. Instantaneous speed (or velocity):
8. Describe a trip in which a car's average speed equals its instantaneous speed for the entire time.
