11. In which direction should current flow in order to recharge a secondary cell? Why?

Backwards through the cell – from positive to negative to reverse the chemical reaction within the cell

Series Circuits			
Current	same everywhere	₇ = ₁ = ₂ =	
Voltage	split up	$V_{T} = V_{1} + V_{2} +$	
Resistance	adds up	$R_{\tau}=R_{\tau}+R_{2}+\ldots$	
Power (brightness)	adds up	$P_{\overline{\tau}} = P_1 + P_2 + \dots$	
Ratios: $P_{2} \neq V_{2} = \frac{1}{1} \frac{1}{R_{2}}$ Control: $\Box_{1} = \Box_{2}$			

2. A battery with an emf of 9 V and an internal resistance of 1 ohm is connected to a 2-ohm resistor as shown. How much current is in the circuit and what is the terminal potential difference?

Potential Divider: Resistors in series act as a "potential (voltage) divider." They split the potential of the source between them

3. A 20 Ω device requires 40 V to operate properly but no 40 V source is available. In each case below, determine the value of added resistor R₁ that will reduce the voltage of the source to the necessary 40V for device R₂.

Parallel Circuits		
Current	split up	$ _{T} = _{1}^{+} _{2}^{+} \dots$
Voltage	same everywhere	V ₁ =V ₁ =V ₂ =
Resistance	adds down	$\gamma_{R_{\tau}=R,\tau R_{2}^{+}}$
Power (brightness)	adds up	$P_{\overline{\tau}} = P_1 + P_2 + \dots$
Ratios: $\frac{P_1}{P_2} = \frac{1}{12} \frac{\sqrt{R_1}}{\sqrt{R_2}} = \frac{R_2}{R_1}$ Control: $\sqrt{1} = \sqrt{2}$		

5. A cell with an emf of 6 volts and an internal resistance of 1 ohm is connected as shown. Determine the total current in the circuit and the terminal potential difference. $R_{\tau} = l_{\Delta} + 2\Omega$ $R_{\tau} = \sqrt{R^2} \frac{\delta v}{3\omega} = 2\Lambda$ $R_{\tau} = \sqrt{R^2} \frac{\delta v}{3\omega} = 2\Lambda$ $R_{\tau} = \sqrt{R^2} \frac{\delta v}{3\omega} = 2\Lambda$ $R_{\tau} = \sqrt{R^2} \frac{\delta v}{3\omega} = 2\Lambda$

