units for charge: $1.6 \times 10^{-19}{ }^{\text {Particle acceleration }}=1$ (or 1 e$)$

$$
E_{k}=q V=(y-1) E_{0}
$$

9. An electron is accelerated through a potential difference $2.0 \times 10^{6} \mathrm{~V}$. Calculate its energy, kinetic energy, and speed.

$$
E=E_{0}+q V
$$

$$
Y=\frac{2.51}{.5}=\frac{E}{E_{0}}=\frac{\mathrm{m}}{\mathrm{~m}_{0}}
$$

$$
\frac{.51 m_{e} V}{(1 e)(2 M V)} \underset{2 M_{e} V}{2.5 \backslash M e V}
$$

$$
\begin{aligned}
Y=\frac{1}{\sqrt{1-V^{2}}} \quad Y^{2}=\frac{1}{1-v^{2}} \quad 1-v^{2}=\frac{1}{Y^{2}} \quad v^{2}=1-\frac{1}{y^{2}} \quad V & =\sqrt{1-1 / y^{2}} \\
& =.979 c
\end{aligned}
$$

$$
\begin{aligned}
& \text { 8. A proton is accelerated to a speed of } 0.95 c \text {. Determine its energy, rest energy, and kinetic energy. } \\
& E_{0}=938 \mathrm{meV} \\
& E_{k}=2064 \mathrm{meV} \\
& m_{0}=938 \frac{\mathrm{meV}^{2}}{\mathrm{c}^{2}} \\
& E=
\end{aligned}
$$

${ }^{\text {i) mass }} 938 \mathrm{McV} / \mathrm{C}^{2}$

$$
m_{0}=938 \frac{\mathrm{McV}}{\mathrm{c}^{2}}
$$

$$
938 \mathrm{mcV}
$$

$$
y=1
$$

iii) momentum

0
b) The proton is accelerated through a potential difference V until it reaches a speed of 0.900 c . Determine:
i) its kinetic energy

$$
y=2.29
$$

$$
1210 \mathrm{MeV}
$$

$$
q=1 . \quad y=\frac{1}{\sqrt{1-q^{2}}}
$$

2. A proton is accelerated through a potential difference of $3.0 \times 10^{9} \mathrm{~V}$.
a) Calculate the energy of the proton after its acceleration.
b) Calculate the final momentum of the proton.

$$
p=\underset{M}{c} v
$$

$$
\begin{aligned}
& \text { V: } 3000 \mathrm{MV}
\end{aligned}
$$

$$
\begin{aligned}
& E=3938 \mathrm{MeV} \mathrm{E}_{\mathrm{E}} 3000 \mathrm{MeV} \\
& =3820 \frac{\mathrm{MeV}}{\mathrm{c}} \\
& E=3938 \mathrm{MeV} E_{\mathrm{E}} 3000 \mathrm{MeV}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ii) the potential difference } \\
& \text { iii) its mass } \\
& m=y m \text {. } \\
& =2150 \mathrm{MeV} / \mathrm{c}^{2} \\
& \text { (le) } 1210 \mathrm{MV}= \\
& \text { iv) its energy } \\
& E=E_{0}+E_{k} \\
& \text { v) its momentum } \\
& =y E_{0} \\
& =2150 \mathrm{MeV} \\
& p: \gamma m_{0} v \\
& =2.29 .938 \mathrm{MeV} / \mathrm{c}^{2} .9 \mathrm{c}=1930 \frac{\mathrm{MeV}}{\mathrm{c}} \\
& \begin{aligned}
E^{2}=P^{2}+m_{0}^{2} \rightarrow P & =\sqrt{E^{2}-m_{0}^{2}} \\
& =\sqrt{\left(2150 M_{c}\right)^{2}-(938 \mathrm{MeV})^{2}}
\end{aligned}
\end{aligned}
$$

3. "Pair production" is a process by which antimatter pairs of happen when a high energy gamma ray photon is in the gamma photon is near a lead atom, the reaction pictured an electron-positron pair. If the energy of the photon (Neglect the recoil of the lead atom and assume the ener a) The energy and kinetic energy of each particle. $\begin{array}{ll} e^{-} E_{0}=.51 \mathrm{MeV} & E=1.6 \mathrm{meV} E_{k}=1.09 \mathrm{meV} \\ e^{+} E_{0}=.51 \mathrm{meV} & E=1.6 \mathrm{meV} E_{k}: 1.09 \mathrm{meV} \end{array}$ b) The speed of each particle. $y=\frac{1.6}{.51}=3.137$	are produced from energy. This can heavy nucleus. For example, if a ght occur, where the photon creates calculate the following quantities. equally between the particles.) c) The mass of each particle. d) The momentum of each particle. $P=\sqrt{E^{2}-M_{0}^{2}}$ $=m_{T} \cdot \frac{C}{t+1, y m_{0}}$	$+e^{+}$ Themson - Aftert Cole MeV C

General Theory of Relativity: a more general theory of relativity that takes into account non-inertial (accelerating) reference frames and relates them to the effects of gravity

1. Inertial Mass - A property of an object that determines how much it resists accelerating.

Different masses have different accelerations when the same net force acts on them.
2. Gravitational Mass - the property of an object that determines how much gravitational force it feels when near another object.

Different masses have different gravitational forces acting on them them.

Observation: All experiments to measure each type of mass for an object have shown that, within the experimental uncertainty,
an object's gravitational mass is numerically equal to its inertial mass

