Simultaneity and the Relativity of Time

Event: something happening at a particular time and at a particular point in space

1. Two events occurring at different points in space and which are simultaneous for one observer cannot be simultaneous for another observer in a different frame of reference.
2. Two events occurring at the same point in space and which are simultaneous for one observer are simultaneous for all observers.

Einstein's Train Gedanken (Thought Experiment)

1. A train is traveling to the right with constant speed v with respect to the ground. Tom is in the midpoint of the train car. At the moment Tom passes Grace, two bolts of lightning strike the ends of the car, as seen by Grace. What does each observer notice and why?

From Grace's point of view:
The strikes are simultaneous to her but not to Tom
Grace's observation about herself:
The strikes are simultaneous since the light from each strike has to travel the same distance to her at the same speed (c) and hence will take the same amount of time to get to her.

Grace's observation about Tom:
The strikes are not simultaneous since Tom is moving towards the light traveling from the Right strike and traveling away from the light traveling from the Left strike. Since the speed of light in a vacuum is the same for all observers in inertial reference frames, the light from the Right strike will reach him first. Hence, he will report that the lightning struck the Right end first and then the Left end.

The strikes are not simultaneous to him but are to Grace

Tom's observation about himself:
His car is stationary. The lightning will strike the Right end first and then the Left end. Tom's observation about Grace:

Grace will see the strikes as simultaneous since she is moving to the left, away from the light traveling to her from the Right end and toward the light traveling to her from the Left end. Since the speed of light in a vacuum is the same for all observers in inertial reference frames, and the light has a longer distance to travel from the Right end, it will reach Grace at the same time as the light from the Left end.
2. Grace is at rest with respect to the ground. Tom is in a carriage that is moving with speed v relative to Grace in the direction shown. Two flashes of light are emitted from the back and the front of the carriage. According to Tom's clock they arrive at Tom's position simultaneously. Explain why the arrival of the light pulses at Tom will also be simultaneous to Grace.

The arrival of the light flashes occurs at the same location in space and since they are simultaneous for one observer (Tom) they are simultaneous for all observers (Grace). This means that Grace reports they reach Tom simultaneously (but not that they were emitted simultaneously since the flashes were emitted at two different locations.)

Tom would report that the flashes were emitted from each end of the carriage simultaneously and since they travel the same distance to him at the same speed would arrive at the same time.

Grace would report that the flash from the left end occurred first. Since Tom is moving away from that flash which has a longer distance to travel and towards the flash from the right end which has s shorter distance to travel at the same speed, the flashes arrive at him simultaneously.

B. Time Dilation

Light Clock:

a beam of light reflected between two parallel mirrors used to measure the time interval between two events
Beginning Event: the light pulse is emitted from the source

Ending Event: the light pulse is detected at the detector

Each observer uses a light clock to measure the time, as seen from their frame of reference, between the pulse being emitted and detected. When the space ship is at rest with respect to the observer on Earth, the two clocks measure the same amount of time.
$\Delta t_{0}=$ time measured in the astronaut's frame of reference

$\Delta t=$ time measured in the earth observer's frame of reference

If the two frames of reference are at rest with

$$
t=t_{0}
$$

respect to one another, then

Time dilation: stretching of time - moving clock runs more slowly than stationary clocks

NOTE: situation is symmetric - astronaut sees Earth observer's clock run more slowly since ship could be at rest and the earth observer moving in the opposite direction

Proper time interval $\left(\Delta \mathbf{t}_{0}\right)$: the time between events as measured in a frame where the events take place at the same point in space (in moving frame)

NOTE: The proper time is the shortest possible time that any
observer could correctly record for the time between events.

Example: A certain particle created in an experiment has a lifetime of $2.2 \mu \mathrm{~s}$ when measured in a reference frame in which the

 particle is at rest.a) Describe a reference frame in which the particle could be considered at rest.
a lab, it's own frame
b) What is the "proper lifetime?"

$$
t_{0}=2.2 \mu s
$$

c) In another experiment, the particle is accelerated in a "particle accelerator" to a speed of $2.7 \times 10^{8} \mathrm{~m} / \mathrm{s}$. This is the speed of the particle as measured relative to a stationary frame of reference. Give an example of such a frame of reference.
d) Calculate the Lorentz factor for this particle.

$$
\frac{1}{\sqrt{1-\left(\frac{2.7 \times 10^{8} \mathrm{~m} / \mathrm{s}}{3 \times 10^{6} \mathrm{~m} / \mathrm{s}}\right)^{2}}}=2.29
$$

f) What would be its lifetime if it traveled at 0.98 c ?

$$
5.03 \quad 11 \mu s
$$

e) Calculate the lifetime of the particle as measured in the stationary reference frame.

$\sim S \mu s$

C. Length Contraction			
Because of Special Relativity, observers moving at a constant velocity relative to each other measure different time intevals between two evetnts. Bt if speed = distance/time and the speed is the same for each observer, then the two observers must measure different distances or lengths as well. This effect is known as length contraction. according to a stationary observer, moving objects contract (shrink) length contraction: in the direction of motion (but not in perpendicular directions)			
For example, a ruler at rest appears to have a length of L_{0}. This is known as its proper length. proper length: the length of an object recorded in a frame of reference where the object is at rest NOTE: This is the greatest possible length for the object $L=\frac{L_{0}}{y} t=t_{0} \times y$			

