Suggested problems week #5

6-95. See answers in bold in the table below. $y = 3^x$

x	y
0	1
1	3
2	9
3	27
4	81
5	243
6	729
7	2187
8	6561

6-96. In $2 = 1.04^x$ the variable is the exponent, but in $56 = x^8$ the exponent is known so you can take the 8^{th} root.

6-97. x > 100, because $10^2 = 100$.

6-98. Answers vary but students should recognize that 0 < b < 1.

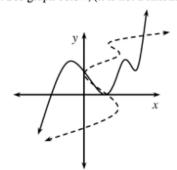
6-99. See below:

a.
$$\frac{1}{8}$$

b.
$$\frac{1}{x}$$

c.
$$m \approx 1.586$$

d.
$$n \approx 2.587$$


e. Answers vary.
$$x = b^{1/a}$$

6-100.
$$2^{1/2} = \sqrt{2}$$
 and $2^{-1} = \frac{1}{2}$

6-102. See below:

a. Yes.

b. See graph below, (it is not a function).

c. Not necessarily.

d. Functions that have inverse functions have no repeated outputs; a horizontal line can intersect the graph in no more than one place.

e. Yes; for example, a sleeping parabola is not a function, but its inverse is a function.

6-103. See below:

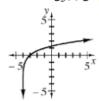
a.
$$x = -3$$
, $y = 5$, $z = 10$

- b. There are infinitely many solutions.
- c. The planes intersect in a line.

6-113. See below:

a.
$$x \approx 5.717$$

b.
$$x \approx 11.228$$


6-114. See below:

a.
$$\frac{x^2}{x-1}$$

b.
$$\frac{b+a}{a-a^2b}$$

6-115.
$$\frac{\log_5 7}{\log_5 2}$$

6-116. It is the $log_3(x)$ graph shifted 4 units to the left. See graph below.

6-117. 16.5 months; 99.2 months

6-121. See below:

a.
$$\frac{6x-21}{x^2-3x-4}$$

b.
$$\frac{5}{x^2-9}$$

6-122. See below:

b.
$$n = 7$$

c. No, because there are no terms between the 6th term (62,500) and the 7th term (312,500).

6-127. See below:

a.
$$y = 40(1.5)^x$$

b. When x = -9, or 9 days before the last day of October (October 22).

6-128. Possible answer: $4^{(x+1)} = 6$

6-129. Sample solutions below:

a.
$$\frac{2}{3}\log(8)$$
, $\frac{1}{3}\log(8^2)$, $2\log(\sqrt[3]{8})$

b.
$$\log 5^{-2}$$
, $-\log 25$, $2\log \frac{1}{5}$

6-130. The graph should show a decreasing exponential function which will have an asymptote at room temperature. Students should realize that the temperature of the drink would not drop below the ambient temperature of the room.

6-131.
$$y = x^2 - 6x + 8$$

6-132. See below:

- a. $x \ge \frac{1}{2}$ and $y \ge 3$
- b. $g(x) = \frac{(x-3)^2 + 1}{2}$
- c. $x \ge 3$ and $y \ge \frac{1}{2}$
- d. x
- e. x (They are the same, because f and g are inverses.)

6-133. See below:

- a. $x \approx 6.24$
- b. x = 5

6-135. See below:

- a. x + 5
- b. a + 5
- c.x-y
- d. $\frac{x^2+1}{x^2-1}$

6-136. See below:

- a. $p^{-1}(x) = \sqrt[3]{(\frac{x}{3} 6)}$
- b. $k^{-1}(x) = \sqrt[3]{(\frac{x-6}{3})}$
- c. $h^{-1}(x) = \frac{x+1}{x-1}$
- $d. f^{-1}(x) = \frac{3x-2}{x} = -\frac{2}{x} + 3$

6-138. See below:

- a. Decreasing by 20% means you multiply by 0.8 each time, and the presence of a multiplier implies exponential.
- b. $y = 23500(0.8^x)$
- c. \$9625.60
- d. ≈ 6.12 years
- e. \$42,926.44

6-139. See below:

- a. $x = \frac{1}{2}$
- b. x > 0
- c. $x = 10^{23}$

6-140. See below:

- a. x = 2.236
- b. x = 4.230
- c. x = 0.316
- d. x = 2.021
- e. x = 3.673

6-141. See below:

- a. 16
- b. 12
- c. $12^4 = 20736$
- d. 54
- e. No, they are not inverses (if they were, then the answers to parts (c) and (d) would have to be 2).

6-142. Square it and subtract 5; he dropped in a 76.

- **6-143.** $c(x) = x^2 5$
- **6-144.** x = 17

6-145. See below:

- a. $\frac{2(x+1)}{x+3}$
- b. $\frac{3x^2-5x-3}{(2x+1)^2}$