Analyzing Series Circuits

SAME 1. Current: Current is the same at all points in a series circuit. Current is the same through each resistor.

$$
I_{T}=I_{1}=I_{2}=I_{3}
$$

note: Current is the same if the circuit is the same
2. Voltage: The increase in potential provided by the battery is equal to the sum of the potential drops across each resistor.
SUM

$$
V_{T}=V_{1}+V_{2}+V_{3}
$$

note: conservation of energy
Kirchhoff's Second Law (Voltage Law, Loop Rule):

Gustav Robert Kirchhoff (1824-1887)
sol

$$
R_{1}=R_{1}+R_{2}+R_{3} \quad R_{1}=R_{e q}
$$

Eanuriater resisisune- Single resistance that could replace
Note: R_{T} is always greater than any individual resistance.
4. Power: The total power used in the circuit is the sum of the power used by the individual resistors.

$$
P_{T}=P_{1}+P_{2}+P_{3}
$$

note: conservation of energy

Series relationships

$$
V=I R
$$

5. In a series cireutt, which resistor, if any, will ...
a) have the greatest potential difference across it?
largest resistance
b) have the most current running through it?
none (same current)
c) dissipate the most power?
largest resistor
d) shine brightest (if it is a light bulb)?
largest resistance is the one
gest resprunce the most power
6. Determine the current through each resistor, the potential drop across each resistor, and the power dissipated by each resistor in the circuit below.

7. Find the potential difference across each resistor, the current through each resistor, and the power used by each resistor.

$$
\begin{aligned}
& R_{T}=18 \Omega \\
& I_{T}=\frac{36 \mathrm{~V}}{18 \Omega}=2 \mathrm{~A}
\end{aligned}
$$

I-V Characteristics

1. The graph below shows the I-V characteristics of two conductors, X and Y. The conductors are connected in series to a battery whose voltage is such that the power dissipated in each of the two resistors is the same.

$V=I R$

b) Determine the total voltage of the battery.
$4 V+4 V=8 V$
c) Determine the total power dissipated in the circuit.
$P_{T}=I_{T} V_{T}=(0.8 A)(8 \mathrm{~V})=6.4 \mathrm{~W}$
d) The battery is replaced by another one such that the current through X is 0.2 amps . Determine the voltage of this battery.
$" X "+" Y "$
$1.0 V+0.3 V=1.3 V$

Combining Light Bulbs in Parallel

1. Build a circuit with one light bulb and observe its brightness same $\uparrow \downarrow$
2. Add a second bulb in parallel. Observe or infer what happens to the:

3. Unscrew one light bulb from its base (but leave the base in the circuit). What happens to the other light bulb? Why?
The other light bulb stavson because the circuit is Still intact.
4. Assume each light bulb has a constant resistance of 10Ω. Analyze each circuit.

5. Voltage: The increase in potential provided by the battery is equal to the potential drop across each resistor.

SAME $V_{T}=V_{1}=V_{2}=V_{3}$
2. Current: The total current coming out of (and going back into) the battery is equal to the sum of the individual currents going through each resistor.

$$
I_{T}=I_{1}+I_{2}+I_{3}
$$

Note: conservation of electric charge
3. Power: The total power used in the circuit is the sum of the power used by the individual resistors.

$$
P_{T}=P_{1}+P_{2}+P_{3} .
$$

4. Resistance: The reciprocal of the total resistance is equal to the sum of the reciprocals of the individual resistances.

$R^{-1} \quad R_{T} \quad R_{1} R_{2} R_{3}$
note: Total resistance of the
system is less than any individual resistance.
5. A 3.0Ω and a 6.0Ω resistor are connected in parallel. What is their equivalent resistance?

$$
R_{e q}=\left(\frac{1}{3.0 \Omega}+\frac{1}{6.0 \Omega}\right)^{-1}=2^{0} \Omega=R_{T}
$$

Parallel relationships

$$
V=I R \quad P=I V
$$

$V_{1}=I_{1} R_{1} \quad I_{2} R_{2}=I_{1} R_{1}$
6. In a parallel circuit, which resistor, if any, will . . .
a) have the greatest potential difference across it? none - same voltage
b) have the most current running through it?
smallest resistor
c) dissipate the most power?
d) shine brightest (if it is a light bulb)?
smallest resistor

