6.3 Momentum

Which is more difficult to stop: A tractor-trailer truck barreling down the highway at 35 meters per second, or a small two-seater sports car traveling the same speed?

You probably guessed that it takes more force to stop a large truck than a small car. In physics terms, we say that the truck has greater momentum.

We can find momentum using this equation:

$$
\text { momentum }=\text { mass of object } \times \text { velocity of object }
$$

Velocity is a term that refers to both speed and direction. For our purposes we will assume that the vehicles are traveling in a straight line. In that case, velocity and speed are the same.

The equation for momentum is abbreviated like this: $=m \times v .=p$
Momentum, symbolized with a v is the velocity of the object in m / s.

$$
\begin{aligned}
& \text { (momentum) } \vec{p}=m \vec{V} \leftarrow \text { (velocity) }
\end{aligned}
$$

$$
\begin{aligned}
& p=m v \\
& m=\frac{P}{v} \\
& v=\frac{p}{m}
\end{aligned}
$$

