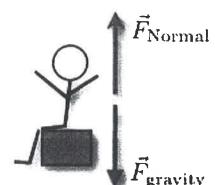


Name	Dlock	Data
name	Block	Date

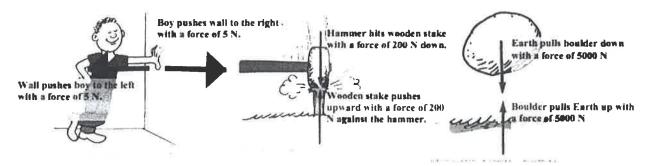

Newton's Third Law of Motion

Why?

Forces result from interactions. Today we will explore the forces that exist whenever objects interact with each other.

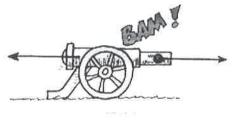
Newton's Third Law of Motion

According to Newton, whenever objects A and B interact with each other, they exert forces upon each other. When you sit in your chair, your body exerts a downward force on the chair and the chair exerts an upward force on your body. There are two forces resulting from this interaction a force on the chair and a force on your body. These two forces are called action and reaction forces and are the subject of Newton's third law of motion. Formally stated, Newton's third law is:


For every action, there is an equal and opposite reaction. (Opposite direction)

(equal in mayibule or size)

All forces come in pairs. Action and reaction pairs follow a simple general rule: "If the ACTION is


A acting on B, then the reaction is B acting on A."

The following illustrations show several action and reaction forces:

Identify the action or reaction force of each situation. (Remember to apply the rule above)

3500 N.

to the left with a force of 3500 N. Reaction: The cannon pushes the cannonball to the right with a force of

Action: The wheels of the car push against the road.

Reaction: The road pushes against the wheels of the car.