$$
y=10 \mathrm{~m} / \mathrm{s}^{2}
$$

1. a) Estimate the gravitational potential energy of this apple.

$$
\begin{gathered}
P E_{g}=m g h \quad m=0.1 \mathrm{Kg} \\
(0.1 \mathrm{~kg})\left(10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)(1 \mathrm{~m})=1 \mathrm{~J}
\end{gathered}
$$

Base level (Reference Level, Zero Level):

$$
P E_{g}=\varnothing \quad h=\varnothing m
$$

level from which height is measured.
b) Does PE_{g} depend on the choice of a base level?
yes
c) When does an object have:
i) Pasiurepere above the base level
ii) Zero PE_{2} ? at base level
iii) Negative PE_{g} ? below base level
d) Does the change in potential energy $\left(\triangle \mathrm{PE}_{\mathrm{g}}\right)$ depend on the choice of a base level?
no
2. A 900 . kilogram car drives off the edge of a 45 meter high cliff at a speed of 25 meters per second. How much energy does the car have at this point? 45 m .

$$
\begin{aligned}
& m=900 . \mathrm{kg} \quad V=25 \frac{\mathrm{~m}}{\mathrm{~s}} \quad h=45 \mathrm{~m} \\
& E_{T}=P E_{g}+K E \\
& E_{T}=m g h+\frac{1}{2} \mathrm{mv} \\
& \\
&(900 . \mathrm{kg})\left(9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)(45 \mathrm{~m})+\frac{1}{2}(900 . \mathrm{Kg})(25 \mathrm{~m} / \mathrm{s})^{2}= \\
& 6.8 \times 10^{5} \mathrm{~J}
\end{aligned}
$$

3. A runner has 800 joules of kinetic energy. If he doubles his speed, how much kinetic energy does he now have?

$$
K E-\frac{1}{2} m V^{2}=800 \mathrm{~J}
$$

$$
\begin{aligned}
& \text { if } v \text { is " } 2 v \text { " then multiply } 800 \mathrm{~J} \text { by } 2^{2} \\
& =3200 \mathrm{~J}
\end{aligned}
$$

4. A spring whose spring constant is $\frac{125 \text { newtons per meter, is compressed } \underbrace{0.50 \text { meter }}_{K} \text {, }}{X}$
a) Determine how much energy is stored in the spring.

$$
\begin{aligned}
& P E_{s}=\frac{1}{2} K x^{2} \\
& \frac{1}{2}\left(125 \frac{\mathrm{~N}}{\mathrm{~m}}\right)(0.50 \mathrm{~m})^{2}=116 \mathrm{~J}
\end{aligned}
$$

b) How much force was needed to compress the spring?
$F=K x$
$\frac{125 \mathrm{~N}}{\mathrm{~m}}(0.50 \mathrm{~m})=63 \mathrm{~N}$

$$
P E=m g h \quad W E=\frac{1}{2} m V^{2} \quad P E=\frac{1}{2} W X^{2} \quad F=K X
$$

5. Sketch the following relationships:

speed

height

mass

Trassemamaion: conversion of energy from ane form (type) to
another
Transeris passing energy from one object to another
Describe the energy transformations and energy transfers in each example below:

1) Basketball is dropped

Transformation:

Transfer:

$$
\begin{aligned}
& \text { Transfer: } \\
& \text { gravitational } \\
& \text { field strength } \rightarrow \text { ball }
\end{aligned}
$$

2) Arrow is shot by archer

Transformation:
Transfer:

$$
P E_{S} \rightarrow K E
$$

bow string \rightarrow arrow
3) Bus skids to a halt

Transformation:

$$
K E \rightarrow Q
$$

4) Light bulb is lit

Transformation:
chemical energy \rightarrow electrical energy \rightarrow light

Transfer:
bus tires \rightarrow
the ground \rightarrow surrounding air

Transfer:
battery \rightarrow wire \rightarrow
bulb

Conservation of
Energy Principle The total energy of an isolated system remains constant.
meaning: Energy is neither created nor destroyed; it is
transferred from one object to another or transformed from one type to another. Isolated system:
"closed system

-PE -LE - Q

1. a) A student drops a ball from the edge of a cliff. Each snapshot shows where the ball is at the end of each 1.0 second of free fall. Fill in a pie-chart showing the relative amounts of each type of energy the ball has in each snapshot. Neglect air resistance.
b) Sketch graphs of the kinetic energy, gravitational potential energy, and total energy of the ball as a function of its height above the ground.

c) Make a statement about the gravitational potential energy and the kinetic energy of the ball as it falls.

PE is transformed into KE as the ball falls.

d) Make a statement about the total energy of the ball as it falls.
Total energy is conserved.
e) Discuss the energy of the ball if air resistance is not neglected.

$$
\begin{aligned}
& \text { Mechanical is not conserved with air resistance. } \\
& \text { some of the mechanical energy is } \\
& \text { transformed to thermal energy. }
\end{aligned}
$$

f) Complete the pie charts above for the case in which air resistance is NOT negligible.

$$
E_{T_{i}}=E_{T_{f}}
$$

IB 11
Conservation of
Energy Formula:

$$
P E_{i}+K E_{i}+Q_{i}=P E_{f}+K E_{f}+Q_{f}
$$

(in a vacuum)
2. A pendulum starts from rest at position 1 and swings freely back and forth. PE
a) Complete the energy pie charts. KC
b) A student braves the "bowling ball of death" by releasing it at their nose level. Estimate the speed of the ball at tits lowest level.

$$
\begin{aligned}
& P E_{\text {goop }}=K E_{\text {Boron }} \\
& m g h_{\text {Top }}=\frac{1}{2} m v_{\text {Boron }}^{2}
\end{aligned}
$$

3. A rollercoaster starts from rest and rolls freely downhill, neglecting friction.

a) Complete the energy pie charts.
b) A $750 . \mathrm{kg}$ car starts at the top of the 45 meter high first hill and rolls downhill. Calculate how fast it is traveling at position 4 which is 30 meters high..

$$
\begin{aligned}
& \text { P } P E_{g_{i}}+K E_{i}=P E_{g r}+K E_{f}
\end{aligned}
$$

$$
\begin{aligned}
& \phi=-g h_{1}+g h_{4}+\frac{1}{2} V_{4}{ }^{2}
\end{aligned}
$$

c) Where will the car be traveling the fastest? Why? Th ell KE . .

$$
\begin{aligned}
& V^{2}=\lg (\Delta h) \quad V=17 \frac{m}{5} \\
& V=\sqrt{2 g \Delta h} \\
& \hline 15
\end{aligned}
$$

