Effricens: The ratio of the amount of useful work
done to the amount of total work done.
Formal: \% efficiency $=\frac{\text { useful output }}{\text { total input }} \times 100$

1. An electric motor has an input power of 160 W . In raising a load, 120 W of power are dissipated. What is the efficiency of the motor?

$$
\begin{aligned}
& \text { (input) } \\
& 160 \mathrm{~W} \rightarrow \square \rightarrow 40 \mathrm{~W} \text { (output) } \\
& 40 \mathrm{~W} \times 100=25 \% \\
& \text { efficient }
\end{aligned}
$$

2. A student does 400 . J of work using a pulley to raise a 72 N box to a height of
5.0 meters.
at constant speed
a) How much work does the student do against gravity?

$$
\begin{aligned}
W_{q}=F_{g} \cdot d \cdot \cos \theta \quad \theta & \theta=180^{\circ} \\
W_{g}(72 \mathrm{~N})(5.0 \mathrm{~m})\left(\cos 180^{\circ}\right) & =-360 \mathrm{~J} \\
W_{\mathrm{A}} & =360 \mathrm{~J} \text { agana } 3 t
\end{aligned}
$$

b) How much work does the student do against friction?

$$
\begin{aligned}
& W_{\text {Tole }}=W_{y}+W_{F}+W_{\text {A ind }}=D J \\
& -3605+W_{f}+4005=0 J \\
& W_{F}=-40 J \quad W_{A} \text { gamer function }=40 J \\
& \text { c) How efficient is this pulley? }
\end{aligned}
$$

$$
\frac{360 \mathrm{~J}}{400 \mathrm{~J}} \times 100 \%=90 \% \text { efficient }
$$

3. A 160. -newton box is pulled to the top of a frictionless ramp at constant speed as shown in the diagram. Calculate the amount of work done.

$F_{g}=160 . \mathrm{N} \quad d=10 \cdot \mathrm{~m}$

in parallel
direction

$$
W_{A}=800 \mathrm{~J}
$$

4. Compare the amount of work Factor needed to get this box to the top of the hill by either lifting it or dragging it up the incline if:
a) the incline is frictionless:

Lifting is the same amount work but more force is needed

 same amount of work done Diagonng agamas function

$$
\begin{aligned}
& \underset{\substack{\text { (if)} \\
\text { finder }}}{W}=F d \text { or } W_{\text {and }}=F D \\
& \text { Work done against gravity is independent } \\
& \text { of the path. } \\
& w_{1}<w_{2} \text { foccaus in forived. }
\end{aligned}
$$

5. An 8.0 newton force is used to pull a 10.0 newton box 6.00 meters up a rough hill at constant speed as shown in the diagram.
a) How much work was done pulling the box up the hill?

$$
\begin{aligned}
& W_{A}=F_{A} \cdot d \cdot \cos \theta \quad \theta=0^{\circ} \\
& W_{A^{\prime}}(8.0 \mathrm{~N})\left(6 \mathrm{wam}_{\mathrm{m}}\right)\left(\cos 0^{\circ}\right) \\
& W_{A}=48 \mathrm{~J}
\end{aligned}
$$

b) How much work was done overcoming gravity?

$$
\begin{aligned}
& W_{g}=\left(F_{g} \sin \theta\right)(d) \\
& W_{g}=(10.01)\left(\sin 30^{\circ} \times 6.00 \mathrm{~m}\right)=-30 \mathrm{~J}
\end{aligned}
$$

c) How much work was done overcoming friction?

$$
\begin{gathered}
W_{N E T}=\varnothing J \quad W_{N E T}=W_{A}+W_{F}+W_{\theta} \\
D J=48 J+-?+-30 J \\
W_{F}=-18 J
\end{gathered}
$$

d) How efficient is this process?

$$
\frac{30 J}{48 J} \times 100=63 \% \text { efficient }
$$

