2. A student drags a 20.0 kg box horizontally across the floor at a constant speed for a distance of 3.00 meters by applying a force of 100 . newtons for 8.0 seconds. Calculate how much work was done and how much power was dissipated.

$$
F_{\text {NET }} \varnothing \text { ON }
$$

$$
W=F \cos \theta d
$$

$$
d=3.00 \mathrm{~m} \text { (total) }
$$

$$
F_{A}=100 \cdot \mathrm{~N}
$$

$$
W_{A}+W_{F}=\varnothing J
$$

$$
W_{A}=(100 . \mathrm{N})\left(\cos 0^{\circ}\right)\left(3.0_{\mathrm{m}}\right)=300 \mathrm{~J}
$$

$$
300 J t-300 J=\emptyset J
$$

$$
W_{f}=(100 . \mathrm{N})\left(\cos 180^{\circ}\right)(3.0 \mathrm{~m})=-300 \mathrm{~J}
$$

$$
P=\frac{W_{A}}{t}=\frac{300 \mathrm{~J}}{8.0 \mathrm{~S}}=\frac{38 \mathrm{Wa} \text { As }}{(37.5 \mathrm{~W})}
$$

3. The student then lifts the same 20.0 kilogram box 1.50 meters straight up in the air in 4.0 seconds at a constant speed.
a) Calculate the work he did and the power he used.

$$
g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

$$
m g\left(0^{\circ}\right)(1.5 \mathrm{Sm}) \quad W_{A}=294 \mathrm{~J}
$$

NOTE: When lifting or lowering an object at a constant speed...

$$
F_{A}=-F_{g}=|\mathrm{mg}| \quad P_{A}=\frac{294 \mathrm{~J}}{4 \mathrm{~s}}=73.5 \mathrm{w}
$$

Applied Force is equal in magnitude to the force of gravity
b) A second student lifted the same box to the same height at a constant speed but in only 2.0 seconds. Compare the work she did and the power she generated to those of the first student.

$$
P=\frac{W}{t}=\frac{W}{\left(\frac{1}{2} t\right)} \text { then she used twice } \begin{aligned}
& \text { the power }
\end{aligned}
$$

4. If a child drags a 8.0 kilogram wagon for 10 . meters by using a force of 20 . newtons at an angle of $30 .^{\circ}$ with the horizontal, how much work does he do?

$$
\begin{aligned}
& W_{A}=F_{A} \cos \theta d \\
& W_{A-}(20 . N) \cos \left(30^{\circ}\right)(10 . m)=173.2 \mathrm{~J}
\end{aligned}
$$

5. A student carries 150 . newtons worth of books 10 . meters up a flight of stairs which are inclined at an angle of 30° from the horizontal. How much work does he do?

6. How much work is done on a 120.-kilogram satellite as it orbits the Earth?

