Law of Universal Gravitation:
Everyobject attracts every other object with a force That Is directly proportional to the product of their the distance between them.
Published in: The Principia in 1687

Two identical basketballs are floating in deep space.

a) What will happen?
drift towards each other
b) If basketball \#1 pulls on basketball \#2 with a force of $10 . \mathrm{N}$, how strongly does basketball \#2 pull on basketball \#1?
10.N equal and opposite forces
c) Explain this behavior using one of Newton's laws of motion.
Third Law
d) Compare the accelerations of the two basketballs.

$$
F=m a \text { If the balls have the same mass, they have }
$$

Basketball \#2 is now replaced with a bowling ball.

e), If the mass of the bowling ball is approximately 20 times the mass of the basketball, how strong is the new force pulling on basketball \#1?

$$
200 \mathrm{~N}
$$

f) How much force does the basketball exert on the bowling ball? 200 N
g) Compare the accelerations of the two balls.

$$
\begin{aligned}
& \left(m_{1}\right) 20 a=\left(20 m_{1} a\right. \\
& m_{1} A=M_{2} a
\end{aligned}
$$

$$
r=\text { center to }
$$

$$
F_{g}=\frac{G m_{1} m_{2}}{r^{2}}
$$

1. Calculate the gravitational force of attraction between a basketball and a bowling ball that are 1.50 meters apart.

Distance between centers

Mass
inverse square law:

$$
F_{g} \propto \frac{1}{r^{2}} \quad F_{g} \propto m_{1} \text { or } m_{2}
$$

3. a) Calculate the gravitational force of attraction between you and the Earth.

$$
\begin{aligned}
& \left.F_{g}=\frac{G M_{E} \mathrm{~m}}{\left(R_{E}\right)^{2}}=\frac{\left(6.67 \times 10^{-1} \mathrm{~N} \mathrm{~N}^{2}\right.}{6 \mathrm{sen}^{2}}\right)\left(5.97 \times 10^{44} \mathrm{Kg} \mathrm{~g}\right)(70.0 \mathrm{k}) \\
& \left(6.37 \times 10^{6} \mathrm{~m}\right)^{2}
\end{aligned}
$$

b) For an object on or near the surface of a planet...

$$
r=\text { radius of the planet }
$$

c) What is another name for this force? Demonstrate this.

$$
F_{g}=m g \quad\left(70^{\circ} \mathrm{Kg}\right)\left(9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)=687 \mathrm{~N}
$$

4. a) What is the gravitational force of attraction between a 60. kilogram student and the Earth if the student is in a plane at an altitude of $6.37 \times 10^{6} \mathrm{~m}$?

$$
\begin{aligned}
& F_{g}=\frac{G m_{1} m_{2}}{\left(r_{1}+r_{2}\right)^{2}}=\frac{G m_{1} m_{2}}{\left(2 E_{\varepsilon}\right)^{2}}=\frac{1}{4} F_{g}=147.15 \mathrm{~N} \\
& F_{g}=m g(60 \mathrm{~kg})(9.81 \mathrm{~m})=588.6 \mathrm{~N} \mathrm{~m}
\end{aligned}
$$

b) When an object is above the surface of a planet....
c) How could your answer to (a) be arrived at by proportional reasoning?

$$
F_{g} \times \frac{1}{r^{2}}
$$

