Newton's Law of Universal Gravitation

Every object attracts every other object with a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between them.

Published in: The Principia in 1687

Two identical basketballs are floating in deep space.

a) What will happen?

Basketball

drift towards each other

- b) If basketball #1 pulls on basketball #2 with a force of 10. N, how strongly does basketball #2 pull on basketball #1? 10. N equal and opposite forces
- c) Explain this behavior using one of Newton's laws of motion.

Third Law

d) Compare the accelerations of the two basketballs.

- e) If the mass of the bowling ball is approximately 20 times the mass of the basketball, how strong is the new force pulling on basketball #1? 200N
- f) How much force does the basketball exert on the bowling ball? 200
- g) Compare the accelerations of the two balls.

(m, 20a = (20m)a)mA = Ma

9

Calculating the Force of Gravity

Variable	Fg	G		m	(d) r
Quantity	 Force of gravity Weight (mg) Gravitational Force of attraction 	Universal Gravitation Constant G= 6.67×10	al $\frac{1}{N} \cdot m^2$	mas s	distance between centers
Units	N		Kg2	Kg	m
Туре	vector	scalar	U	scalar	Scalar
M ((Formula	r = center to enter radial separ $F_g = \frac{Gm_im_z}{r^2}$	m2 ration	Gravitational European Strategy Distance Distance inverse square $F_g \ll -$	aphical relation relation rebetween nters are law:	ships $\frac{g_{\text{D}}}{M_{\text{ass}}}$ $\ll M_{1} \text{ or } M_{2}$

1. Calculate the gravitational force of attraction between a basketball and a bowling ball that are 1.50 meters apart. M = 0.62 kg M = 12.4 kg

	$F_g = G_m m_s$	111- 0.02 Ng	1]=
1	Y 2	$F_g = 2.3 \times 10^{-10} \text{ N}$	

2. Calculate the force holding the Moon in orbit around the Earth. pg 242 chart- $M_{E} = 5.97 \times 10^{24} \text{ Kg}$ $M_{m} 7.35 \times 10^{22} \text{ Kg}$ r = 382,500 KmFrom book $r = 3.84 \times 10^{8} \text{ m}^{-1.98 \times 10^{20} \text{ No}}$ 3. a) Calculate the gravitational force of attraction between you and the Earth.

$$F_{g} = G M_{E} m = (6.67 \times 10^{-11} N_{m^{2}})(5.97 \times 10^{24} kg)(70.0 kg)$$

$$(R_{E})^{2} \qquad (6.37 \times 10^{6} m)^{2}$$

$$= 687N$$

b) For an object on or near the surface of a planet . . .

c) What is another name for this force? Demonstrate this.

$$F_g = mg (70.0 kg)(9.81 m) = [687N]$$

4. a) What is the gravitational force of attraction between a 60. kilogram student and the Earth if the student is in a plane at an altitude of 6.37×10^6 m?

$$F_{g} = \frac{Gm_{i}m_{z}}{(r_{i}+r_{z})^{2}} = \frac{Gm_{i}m_{z}}{(2R_{E})^{2}} = \frac{1}{4}F_{g} = 147.15N$$

$$F_{g} = mg (GOK_{g})(9.81m_{z}) = 588.6N$$

b) When an object is above the surface of a planet
$$r = R_p + a | ti | v de$$
 $R_p = radius of plance$

c) How could your answer to (a) be arrived at by proportional reasoning?

