8. a) Compare the force exerted by the track on the cyclist at the top and the bottom.

Bottom:

Top:

$$
\sum F_{\text {in }}=\frac{m v^{2}}{r}
$$

b) Derive an expression for the minimum speed the cyclist must have at the top to successfully make it around the track without falling.

$$
\begin{aligned}
V_{\text {min }}=\sqrt{r g} & \text { see problem } \# 7 b \\
\sum F_{\text {in }}=\frac{A i v^{2}}{r}=\operatorname{aig} & V^{2}=g r \quad V=\sqrt{r g}
\end{aligned}
$$

9. A student decides to go on the chair swing ride at an amusement park. Together the student and the chair have a combined mass of 80 . kilograms and the chain makes an angle of 25° with the vertical as shown. Determine the tension in the chain and the speed of rotation of the ride.

F_{T}

$$
m=80 . \lg \quad \theta=25^{\circ}
$$

$$
F_{T} \cos \theta=F_{g}
$$

$$
F_{T} \cos \theta=m g
$$

$$
F_{r}=\frac{m g}{\cos \theta}
$$

$$
\left.F_{T}\right)=865 \mathrm{~N}=870 \mathrm{~N}
$$

1) what is the tension?
