1. A student swings a rubber stopper around on a string at a constant speed with a centripetal acceleration of $6.0 \mathrm{~m} / \mathrm{s}^{2}$, as shown. What would happen to the acceleration if:
a) the speed is doubled?
d) the speed is doubled and the string's length is halved?

$$
a=\frac{(2 v)^{2}}{r}=
$$

$$
4 \text { times } \vec{a}_{i}
$$

b) the speed is halved?

$$
a=\frac{(2 v)^{2}}{\left(\frac{1}{2}\right) r}=8 \text { times the } \stackrel{\rightharpoonup}{a}
$$

$$
a=\frac{\left(\frac{1}{2} V\right)^{2}}{V} \frac{1}{4} \text { initial } \vec{a}
$$

c) the string's length is tripled?

$$
a=\frac{v^{2}}{3 r}=\frac{1}{3} \text { initial } \vec{a}
$$

e) the mass of the stopper is doubled?
stays the same
f) What would happen to the tension in the string if the mass is doubled and the speed is halved?'

Graphical Relationships

2. What is the relationship between centripetal force and speed?

Speed

$$
\sum F_{\text {in }} \propto v^{2}
$$

$$
\sum F_{\text {in }}=\frac{m v^{2}}{r}
$$

Control: M,r

$$
F_{T}=\frac{m v^{2}}{r}=\frac{2 m\left(\frac{1}{2} V\right)^{2}}{r}=\frac{1}{2} F_{T}
$$

1. Is a swinging pendulum in equilibrium? Explain. not in equilibrium = changing direction
2. Is a swinging pendulum in uniform circular notion? Justify your answer.

No! not a full circle,

$$
\begin{aligned}
& \text { speeds up, slow's down, slops }+ \text { changes } \\
& \text { direction } B=V_{\text {max }} \quad A+C=V_{\text {min }}
\end{aligned}
$$

3. Compare the tension in the pendulum's string as it swings.

Greatest tension is at " B " When
going at max speed.
4. Compare the tension in a swinging pendulum to one that is hanging motionless. Sketch appropriate diagrams to aid your explanation.

Hanging

F_{g}

5. A $2100-\mathrm{kg}$ demolition ball is attached to the end of a $5.8-\mathrm{m}$ cable.
a) Determine the tension in the cable as the ball hangs motionless.

$$
\sum F=F_{g}+F_{\Gamma}=0 N
$$

$F_{G}=-F_{T}=\left(2100 \mathrm{~kg}\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=21,000 \mathrm{~N}\right]$
(mg)

b) The ball is pulled back and released. At the lowest point of the swing, the ball is moving at a speed of $7.6 \mathrm{~m} / \mathrm{s}$. Determine the tension in the cable upon impact with the wall.

$$
\begin{gathered}
\sum F_{i n}=\frac{m v^{2}}{r}=F_{T}+F_{g} \quad\left(2100 \mathrm{gg}\left(7.6 \frac{6 m}{m}\right)^{2}-(2100 \mathrm{~kg})\left(-9.9 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)\right. \\
F_{T}=\frac{m v^{2}}{r}-F_{g}=\frac{m v^{2}}{r}-m g \quad=\frac{41,493 \mathrm{~N}}{41,000 \mathrm{~N}}
\end{gathered}
$$

* Physics classroom multi-media Circular Motion
need

6. How much force does this 55 kilogram gymnast deed to hold onto the bar as they swing through the bottom of their swing at 3.4 meters per second? Assume their center of mass is approximately 0.80 meter from their outstretched hands.

$$
\begin{aligned}
& \sum F_{\text {in }}=\frac{m V^{2}}{r}=F_{T}+F_{g} \\
& F_{T}=\frac{m V^{2}}{r}-F_{g} \quad \frac{(\text { SS Kg })\left(3.4 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{0.80 \mathrm{~m}}-(\text { ss kg })\left(-9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \\
& F_{T}=1333 \mathrm{~N} \rightarrow 11300 \mathrm{~N}
\end{aligned}
$$

at the bottom

$$
V_{\max }=?
$$

What is the maximum speed that this bucket can have at the bottom
of its swing if the breaking strength of the rope is 100 . newtons?

$$
\begin{aligned}
& F_{r_{\max }}=100 . \mathrm{N} \\
& F_{\text {in }}=\frac{m V^{2}}{r}=F_{T}+F_{g}
\end{aligned}
$$

b) What is the minimum speed the bucket must have at the top of its swing to make it around without the water falling out?
If $F_{T}<F_{g}$ at the top, the bucket will collapse.
at the top $V_{\text {min }}=$?
Fr or b er

$$
\sum F_{i n}=F_{g}=F_{T} \text { for } V_{\min }
$$

F_{T} must be $\geq F_{g}$ to spin.
If exceed $V_{\max }$-rope will break.

$$
\underline{s o} \ldots \frac{m v^{2}}{r}=F g
$$

If less than $V_{\text {min }}$-rope will collapse. $\frac{\frac{n v^{2}}{r}=\text { mig }}{r}$ Minimum speed does not depend on mass.

$$
\begin{aligned}
& \frac{m v^{2}}{r}=x g \\
& V_{\text {min }}=\sqrt{r g}=2.6 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

