4. a. Calculate the tension in the rope when this $50 . \mathrm{N}$ box is being dragged up the hill at a constant speed of $5.0 \mathrm{~m} / \mathrm{s}$ if there is a 10 . N frictional force acting on it.

$$
\begin{aligned}
& \sum F=F_{f}+F_{T}+F_{g \|}=\varnothing N \\
& \operatorname{gcos} \theta \quad F_{T}+-10 N+-2 S N=\varnothing N \\
& F_{F}=M F_{N} \quad U=\left|\frac{F_{F}}{F_{N}}\right|=10 \mathrm{~N} / 4.3 \mathrm{~N}=0.23
\end{aligned}
$$

5. Calculate how fast this box will accelerate down the hill if the hill is frictionless.

6. Calculate the force of friction acting on the box if it now accelerates down the incline at a rate of $0.67 \mathrm{~m} / \mathrm{s}^{2}$.

7. As the angle θ increases, what happens to the ...

wed? Stays the Same nomad fore? decreases $F_{F}=\mu F_{N}$ force officioin? decreases coefficien of fricicion? stays the sames
