2. A cannon ball is shot at an angle of 65.0° with an initial speed of $330 . \mathrm{m} / \mathrm{s}$.

Determine:

a) the components of its initial velocity

$$
V_{x}=139 \frac{m}{5} \quad V_{y}=299 m
$$

b) how long it took to land

c) how far away it landed

$$
d_{x}=V_{x_{i}} t+\frac{1}{2} \theta^{t} \quad \quad a=\left(139 \frac{m}{s}\right)(61.05)=a_{x}=8,480 m
$$

d) how high it went $d_{y}=\left(299 \frac{m}{s}\right)(30.5 s)+\frac{1}{2}\left(-9.8 \frac{\mathrm{~m}}{\mathrm{~s}}\right)(30.5 \mathrm{~s})^{2}=44.560 \mathrm{~m}$
3. The diagram below shows the trajectories of five identical cannonballs all launched with the same speeds but at different launch angles measured from the horizontal.

Sher simulation:

1. Which path shows the projectile having the
a) largest angle of launch? E
b) largest initial vertical component of velocity? E
c) largest initial horizontal component of velocity? A
2. As the launch angle increases, what happens to the
a) initial velocity? resultant \vec{v} (initial) stays the same
b) he components of ftc initial velocity? vertical or \vec{V}_{y} increases, horizontal \vec{V}_{x} decreases
3. At what launch angle will the components of the initial velocity be equal?
4. What angle of launch will give the largest range? 45°
5. Which two projectiles have the same range? a, C

$$
30^{\circ}+60^{\circ}=90^{\circ}
$$

6. What angle of launch will give the longest time in the air (flight time)? E or 90°
7. What angle of launch will make the cannonball go the highest? E or 90°
