

Based on the results of your drawings at left, answer the following questions:

1. What is the relationship between the magnitude of the resultant and the angle between the concurrent vectors?

As the angle of concurrent vectors increases and approaches 180°, the magnitude of the resultant vector decreases.

- 2. What angle between concurrent vectors gives a:
 - a) maximum resultant ? \mathcal{Q}°
 - b) minimum resultant? 180°

3. Two forces of 12 N and 4 N act concurrently on an object. What are the possible values for the resultant force? Sketch vector diagrams to support your answer.

http://www.walter-fendt.de/phlle/resultant.htm http://physics.bu.edu/~duffy/java/VectorAdd.html

angle=180° -12N min (8N)

Resolving a Vector into Components

- 1. Prof. Einstein walked 13.6 m in a direction 55.0° north of east as shown.
 - a) How far did he travel north?
 - b) How far did he travel east?

$$d_x = dsin\theta$$

 $d_x = dcos\theta$

Mathematical Method

b.)
$$\vec{d}_{x} = (0.555^{\circ} = \vec{d}_{x} = 7.80 \text{ m})$$

- 200. N at an angle of 20.° above the horizontal as shown (not to scale).
 - a) Sketch an appropriate vector diagram showing the horizontal and vertical components of the force.

Relative Velocity 04

General Rule: MOVING IN SAME direction

1. Two cars are 400 meters apart and traveling toward each other on a long straight road. One car is moving at 30 m/s and the other at 50 m/s. How long will it take before they meet?

moving same direction - subtract speeds

Vx=380

moving opposite direction - add speeds

Independence of Vectors

2. A motorboat travels at 8.50 m/s, north straight across a river that has a current of 3.80 m/s east.

North shore

a) Determine the boat's resultant velocity.

$$\vec{V} = \sqrt{\vec{J}_y^2 + \vec{V}_x^2} = 9.31 \frac{\text{M}}{5}$$

b) If the river is 100. m wide, how long it will take the boat

$$\vec{d}_{y} = \vec{V}_{y}t + \frac{1}{2}\vec{w}t^{2} = \frac{100 \cdot m}{8.50 \cdot m} = t$$

c) How far downstream will the boat be when it reaches the opposite shore?

$$\vec{J}_x = \vec{V}_x t + \frac{1}{2} x t^2$$
 $\vec{J}_x = (3.8 \text{ m/s})(11.8 \text{ s}) = 44.8 \text{ m}$

South shore

http://www.surendranath.org/Applets.html

 $d = \sqrt{d_{x}^{2} + d_{x}^{2}} = 110.m$

d) How far will the boat actually travel?