Free-Fall and Gravity

Describe the motion of a falling object.

objects get faster as they fall they accelerate

Video 1	Video 2	Video 3
Observations:	Observations:	Observations:
Wair resistance (Oin Wins	in vacuum I I both hit ground at	on the surface of moon (neglible air resistance)

The Law of Falling Bodies: Neglecting air resistance, same time.

ALL bodies fall with the same constant acceleration.

Freely falling: neglect dir resistance

Compare the following locations.

		112
	Air Resistance	ave 10 A Gravity
Earth	Yes	-9.81 m or -9.8 m
Moon	no	-1.6 m or -1.6 m
Deep Space	no	Ø 5° 52

Acceleration due to Gravity

- 1. symbol "g" replaces "a"
- 2. approximation 10 m for Earth
- 3. varies for each planet due to mass (or each body)
- 4. Varies by location on Earth due to distribution of mass

Selected Values of "g"

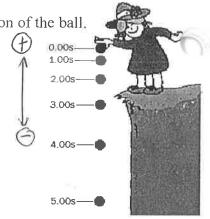
Eugene $g = 9.8 \frac{\text{M}}{\text{S}^2}$

Equator $g = 9.75 \frac{M}{5}^2$

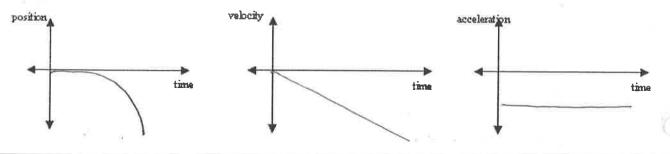
North Pole $g = 9.83 \frac{m}{s^2}$

Moon $g = l. (\underline{m}_2)$

Mars $g = 3.7 \frac{m}{13}$


Complete the chart for the displacement, instantaneous velocity and acceleration of the ball.

		r,	
time (s)	d (m)	v (m/s)	a (m/s ²)
0	0	pm/s	-10
1	-5	-10	-10
2	-20	-20	-10
3	-45	-30	-10
4	-80	-40	-10
5	-125	-50	-10


s velocity and acceleration
$$\vec{J} = y + t + \frac{1}{2}at^{2}$$

$$\vec{J} = y + t + \frac{1}{2}at^{2}$$

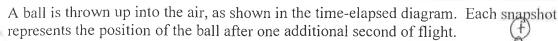
$$\vec{J} = y + at$$

Sketch the position, velocity and acceleration graphs for the falling ball. How would these change if distance and speed were graphed instead?

- 1. A ball is dropped down a shaft and hits the bottom in 3.2 seconds. Determine:
 - a) the depth of the shaft $\vec{\lambda} = 9.8 \text{ m}$ $t = 3.25 \ \vec{V}_1 = 0 \frac{\text{m}}{5} \ \vec{S}^2 \ \vec{O}$

$$\vec{d} = \frac{1}{2} \vec{a} t = 0$$
or $\vec{d} = 50 \text{ m}$
 $|\vec{d} = 50 \text{ m}|$

b) how fast the ball is going when it hits the bottom


- 2. A stunt man jumps off the Brooklyn Bridge which is 40. meters high. Determine:
 - a) the time it takes to hit the water

$$\lambda = 1 at^2$$
 $d = -40. m a = -9.8 m$
 $t = 2.95$

b) his impact velocity V_f $V_f^2 = V_1^2 + 2ad$

$$V_f = -28 \frac{\text{m}}{\text{S}}$$

Throwing Up

a) How long is it in the air? (\emptyset)

30>0> 30 m

- b) How long did it take to get to the top of its path? 35
- How fast was it going when it left the ground?
- Describe how its speed changes during the flight.

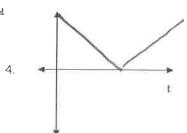
$$\emptyset = V_1 + (-10 \frac{\text{m}}{\text{s}^2})(3s) = 30 \frac{\text{m}}{\text{s}^2}$$

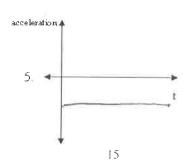
e) Describe how its velocity changes during the flight

					os during				- M
		11	. 10.1	1.0	10/00-1	11 70	lor vei	11000	10 (+)
()((the	WILL	110	VC10761+	4 1)	actic	1311111	Licentina
	11		00009	11	voi oci i	1	0,00.0	71.	ancour
1	10	the	WIM	Amin	VELO	Vhli	(In(ff	A STYDE	in (+) direction

1)	Describe how i	its acceleration change:	s during the flight. M 🖯 🔑	in M	P	(1)
3	uniform	acceleration	s during the flight. In C	Je 10 ===	tor easy	(a C)
A		100 Sales 198 200 M				

- g) Sketch vectors on the diagram to indicate the velocity and acceleration of the ball at each instant.
- h) Complete the chart at right for the ball.
- i) Sketch the graphs below for the hall

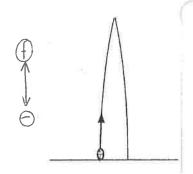

1) 1	i) Sketch the graphs below for the ball.			
	$e^{2} = (30 \frac{m}{8})(18) + \frac{1}{2}(-10 \frac{m}{5})(18)^{2}$ (t=1 second) = 25 m			


	Position (m)	Velocity (m/s)	Acceleration (m/s ²)
Α	0	30m/s	-10
В	25	20	
С	40	10	
D	45	0 m/s	
Е	40	-10 m/s	
F	25	-20 m/s	
G	0	-30 <u>m</u>	V
	/	S	

position	V _F =V; tat
1.	
position relative	, t Vf=30m+-
position relative to ground	Vf=20m
	5
4 0	

>	2.	
Vf=30m+	-10m(18)	
5 5	52	

total path length



- 1. A football is punted straight up and remains airborne for 2.6 seconds. Determine:
 - a) the time it takes to get to the top of its flight

b) vertical launching velocity

$$OM = V_1 + (-9.8 \frac{m}{5})(1.3s) V_1 = 13 \frac{m}{5}$$

$$V_i = 13 \frac{\text{m}}{\text{s}}$$

c) highest point reached

c) highest point reached

$$\hat{J} = V_i t + \frac{1}{2} a t^2 = 8.3 \text{ m} \text{ (if did not round } V_i \text{)}$$

$$7 \hat{T} \hat{T} \hat{T} \hat{S} \hat{T} = 8.6 \text{ m} \text{ (if rounded } V_i \text{)}$$

$$13 \text{ m} \quad f = 1.3 \text{ s} \quad t = 1.3 \text{ s}$$

2. A ball is thrown straight up in the air with an initial velocity of 15 m/s. Determine:

a) the time it takes to get to the top of its flight
$$V_1 = 15 \text{ m}$$
 $\tilde{A} = -9.8 \text{ m}$ $V_{f} = 10 \text{ m}$ $\tilde{V}_{f} = 10 \text{ m}$

b) highest point reached

b) highest point reached

$$\vec{l} = \sqrt{t} + \frac{1}{2} t = \frac{15m}{5} (1.5s) + \frac{1}{2} (-9.8 \frac{m}{5^2}) (1.5s)^2$$

$$t = 1.5s \qquad \vec{l} = 11m$$

c) impact velocity

$$V_f = V_i + at$$
 $V_f = 15m + (-9.8m)(3.0) = [-15m]$