Kinematics Equations (The 'Big 3') Big 4

$$\vec{V} = \Delta \hat{x} = \vec{d_f} - \vec{d_i}$$

$$\vec{\lambda} = \Delta \vec{V} = \vec{V_f} - \vec{V_i}$$

$$\vec{V}_f = \vec{V_i} + \hat{\alpha} t \quad \text{nod} \quad \vec{J} = \vec{V_i} + \frac{1}{2} \hat{\alpha} t^2$$

$$\vec{J} = (\vec{V_f} + \vec{V_i}) t \quad \text{nod} \quad \vec{V_f} = \vec{V_i} + 2 \hat{\alpha} \vec{J}$$

$$\hat{\lambda} = \frac{\Delta \vec{V}}{\Delta t} = \frac{\vec{V}_f - \vec{V}_i}{t_f - t_i}$$

$$\vec{V}_f = \vec{V}_i + \hat{a}t \quad \text{nod} \quad \vec{J} = \vec{V}_i t + \underline{J} \hat{a}t^2 \quad \text{nod} \quad \vec{J} = \vec{V}_i t + \underline{J} \hat{a}t^2 \quad \text{nod} \quad \vec{J} = \vec{V}_i t + 2\vec{a}\vec{J} \quad \text{not} \quad \vec{V}_f = \vec{V}_i^2 + 2\vec{a}\vec{J} \quad \text{not} \quad \vec{J} = \vec{V}_i t + 2\vec{a}\vec{J} \quad \text{not} \quad \vec{J} = \vec{V}_i t + 2\vec{a}\vec{J} \quad \text{not} \quad \vec{J} = \vec{V}_i t + 2\vec{a}\vec{J} \quad \text{not} \quad \vec{J} = \vec{V}_i t + 2\vec{a}\vec{J} \quad \text{not} \quad \vec{J} = \vec{V}_i t + 2\vec{a}\vec{J} \quad \text{not} \quad \vec{J} = \vec{J}$$

Problems vary in packets.

6. A motorcycle traveling at 12.6 m/s accelerates at a rate of 1.7 m/s² for 3.4 seconds. What is its final velocity?

$$\vec{V}_f = \vec{V}_i + at$$
or $18.4 \frac{m}{s}$
 $\vec{V}_f = 18 \frac{m}{s}$

$$V_f = 18 \frac{m}{s}$$

$$12.6m + (1.7m)(3.48) = d = ?$$

7. A bullet is accelerated from rest at a rate of 400 m/s^2 for 0.05 seconds. How far did it travel while it was accelerating?

$$\vec{d} = \vec{V} \cdot t + \frac{1}{2} \vec{a} t^2$$

8. An elephant accelerates from 5.0 m/s to 10. m/s at a rate of 2.0 m/s². What is the elephant's final displacement?

9. A driver brings a car traveling at 22 m/s to a full stop in 4.0 seconds.

What is the car's acceleration?

$$\bar{a} = V_F - V_I = 0 \frac{m}{s} - 22 \frac{m}{s} = -5.5 \frac{m}{s^2}$$

b) How far did the car travel before stopping?

$$\vec{\mathcal{L}} = \left(\frac{V_f + V_i}{2}\right) t$$

$$\vec{d} = \vec{V}_i t + \frac{1}{2} \vec{a} t^2 \qquad \vec{V}_i = \vec{\lambda} - \frac{1}{2} a t^2$$

11. Starting from with a velocity of 2.0 m/s, a lion moves 110 m in 5.0 seconds. What was the lion's acceleration?
$$V_1 = 2.0 \, \text{M}$$

$$\vec{l} = \vec{l}_i t + \frac{1}{2} a t^2$$

$$(d - v_i t) = \vec{a}$$

$$\hat{\mathcal{R}} = 8.0 \, \text{m}$$

$$S^2$$

12. In a historical movie, two knights on horseback start from rest 88.0 m apart and ride directly toward each other to do battle. Sir George's acceleration has a magnitude of 0.300 m/s², while Sir Alfred's has a magnitude of 0.200 m/s². Relative to Sir George's starting point, where do the knights collide?

Sir George's starting point, where do the knights collide?
$$d = 80.0 \text{ m}$$

$$d = 0.300 \frac{\text{m}}{\text{s}^2}$$

$$d = 1.200 \frac{\text{m$$