physics classroom. Com Graphs of Accelerated Motion

Sketch below your predictions and the results for the fan-cart moving away from the detector and speeding up at a steady rate.

1. What is the significance of the slope of the velocity-time graph? slope = acceleration

Sketch below your predictions and the results for the fan-cart moving away from the detector and slowing down at a steady rate.

Sketch below your predictions and the results for the fan-cart moving towards the detector and speeding up at a steady rate.

Sketch below your predictions and the results for the fan-cart moving towards the detector and slowing down at a steady rate.

2. Complete the following chart by looking back over the four demos to determine which carts:

Were moving in a positive direction	Were moving in a negative direction	Had a positive velocity	Had a negative velocity	Were speeding up	Were slowing down	Had a positive acceleration	Had a negative acceleration
1,2	3,4	1,2	3,4	1,3	2,4	1,4	2,3

- 3. What does it mean for the cart to have a positive velocity? MOVING IN POSITIVE direction.

 4. What does it mean for the cart to have a negative velocity? MOVING IN NEGATIVE direction.
- 5. What does it mean for the cart to have a positive acceleration? slope of the velocity graph has to be positive
- 6. If the cart has a positive acceleration, does it have to be speeding up (going faster)?
- 7. What does it mean for the cart to have a negative acceleration? decreasing velocity and the slope of the velocity graph is negative 0 8. If the cart has a negative acceleration, does it have to be slowing down (going slower)? No

deceleration: For acceleration

9. In each case below, decide whether the car is speeding up or slowing down.

11. Compare the car's velocity and its acceleration when it is slowing down.

V+à have opposite sign

Acceleration

Acceleration:	rate	of	change	of	velocity	

$$\vec{a} = \frac{\vec{V_f} - \vec{V_i}}{t_f - t_i} = \frac{\Delta \vec{V}}{\Delta t} = \vec{V_f} = \vec{V_i} + \vec{a}t$$

1. Calculate the acceleration of the plane.

$$\frac{18 \, \text{m} - 0 \text{m}}{5} = 9.0 \, \text{m}}{5^2}$$

2. Calculate the acceleration of the racecar.

$$\frac{18m - 28m}{5} = -5.0 m$$

$$\frac{2.0s}{5}$$

If an object has a negative acceleration, does that mean it is decemptating? Slowing down? NO

negative acceleration: Velocity is decreasing if Velocity is positive to begin.

3. Calculate the acceleration of the plane.

$$-18\frac{m}{5} - 0\frac{m}{5}\Big|_{2.0s} = -9.0\frac{m}{5^2}$$

Can an object have a negative acceleration and be speeding up?

Velocity has both magnitude (speed) + direction. Turning

1. What are the three ways an object can accelerate?

a) V increases b) V decreases c) change direction 2. Can a car have a constant speed and be accelerating? Yes, if direction is changing (magnitude)

3. Can a car have a constant velocity and be accelerating? No. If \(\tau \) does not change then (magnitude + direction)

4. Is it possible for a car to have velocity but no acceleration? Explain and give an example.

Moving at a constant speed in same direction.

5. Is it possible for a car to have acceleration but no velocity? Explain and give an example.

