1. Averaging multiple trials: report the mean value

The following measurements were made for the height of the classroom door. (What's wrong with the data table?)

$$
\begin{aligned}
& \text { - Data Table Title - matched the } \\
& \text { - listed uncertainty place value }
\end{aligned}
$$

What final value should be reported?

Trial	Height (m) $\pm .002 \mathrm{~m}$
1	2.152
2	2.200
3	2.180
4	2.213

$$
\begin{array}{r}
2.18625 m \pm \frac{1}{2}(2.213 m-2.152 m) \\
|2.19 m \pm 0.03 m|
\end{array}
$$

2. Measuring several cycles: reduces the uncertainty
divide total and the uncertainty by the \# of cycles
A mass bounced up and down 5 times in 7.63 seconds as measured on a stopwatch.
How should the total time be recorded? $\quad 7.6 \mathrm{~s} \pm 0.25$
How much time did one full bounce take? $7.65 \div 5 \pm 0.25 \div 5 \quad 1.525 \pm 0.045$
3. Mathematical operations:

Determining uncertainty:
Maximum volume:

$$
83.8 \mathrm{ml}-22 \cdot 4 \mathrm{ml}=61 \cdot 4 \mathrm{~mL}
$$

Minimum volume:

$$
83.6 \mathrm{~mL}-22.6 \mathrm{~mL}=
$$

b) To find the area of his desktop, a student took the following data. How should the area be reported?

Length of desktop: $38.4 \mathrm{~cm} \pm 0.3 \mathrm{~cm}$
Width of desktop: $72.9 \mathrm{~cm} \pm 0.3 \mathrm{~cm}$
Area of desktop:

$$
\begin{gathered}
2799.36 \mathrm{~cm}^{2} \\
28000 \mathrm{~cm}^{2} \pm 30 \mathrm{~cm}^{2} \\
\pm \frac{1}{2}\left(28.32 .84 \mathrm{~cm}^{2}-2766.06 \mathrm{~cm}^{2}\right)=33.3 \mathrm{~cm}^{2}
\end{gathered}
$$

Determining uncertainty:
Maximum area:

$$
\begin{aligned}
& 38.7 \mathrm{~cm} \times 73^{2} \mathrm{~cm} \\
= & 2832.84 \mathrm{~cm}^{2}
\end{aligned}
$$

Minimum area:

$$
\begin{aligned}
& 38.1 \mathrm{~cm} \times 72^{.6} \mathrm{~cm}= \\
& 2766.06 \mathrm{~cm}^{2}
\end{aligned}
$$

c) To find the speed of a toy car, the following data were taken. How should the speed be reported?

$$
\begin{aligned}
& \begin{array}{ll|l}
\text { Distance traveled: } 4.23 \mathrm{~m} \pm 0.05 \mathrm{~m} & \frac{0.05 \mathrm{~m}}{4.23 \mathrm{~m}} \times 100 & \text { Determining uncerta } \\
\text { Time taken: } 8.7 \mathrm{~s} \pm 0.2 \mathrm{~s} & \text { Maximum speed: }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 8.7 \mathrm{~s} \quad 0.106-\frac{5}{5} \\
& 3.48 \% \text { of } 0.4862 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& 0.49 \mathrm{~m}+0.02 \text { onus } \\
& 0.49 \frac{\mathrm{~m}}{\mathrm{~s}} \pm 0.02 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \text { Minimum speed: } \\
& \frac{4.18 \mathrm{~m}}{8.9 \mathrm{~s}}=0.470 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \pm \frac{1}{2}\left(0.5035 \frac{n}{5}-0.470 \frac{m}{s}\right)
\end{aligned}
$$

d) What is the area of a circle whose radius is measured to be $6.2 \mathrm{~cm} \pm 0.1 \mathrm{~cm}$?

Area $7 r^{2}-\pi r \cdot r$

$$
\begin{aligned}
& \pi(6.2(\mathrm{~m}) \\
& \quad 121 \mathrm{~cm}^{2} \pm 4 \mathrm{~cm}^{2}
\end{aligned}
$$

Determining uncertainty:
Maximum area:

$$
\pi(6.3 \mathrm{~cm})^{2}=125 \mathrm{~cm}^{2}
$$

Minimum area:

$$
\pm \frac{1}{2}\left(12 S \mathrm{~cm}^{2}-117 \mathrm{~cm}^{2}\right)=4 \mathrm{~cm}^{2}
$$

$$
\pi\left(6.1(\mathrm{~m})^{2}=117\left(\mathrm{~m}^{2}\right.\right.
$$

