Order of Magnitude Estimation:

Give an order of magnitude estimate for each of the following quantities.
(i500)

1. The number of students enrolled at SEHS
2. The number of teachers at SEHS (~ 70)
3. The number of seconds in this period
$(60 \times 72)=4320$
4. The height of the door in meters
5. The thickness of the door in meters
(cm)
6. The thickness of a piece of paper in meters

Ranges of magnitudes that occur in the universe:
Sizes: $\quad 10^{-15} \mathrm{~m}$ (subnuclear particles)
$10^{+25} \mathrm{~m}$ (extent of the visible universe)

Masses: $10^{-30} \mathrm{~kg}$ (electron mass)
to
$10^{+50} \mathrm{~kg}$ (mass of the universe)

Times: $10^{-23} \mathrm{~S}$ (passage of light across a nucleus)
$10^{+18} \mathrm{~S}$ (the age of the universe)

Size of an atom: $10^{-10} \mathrm{~m}$ - angstrom
A
Size of a proton: $10^{-15} \mathrm{~m}$

Significant Figures, Decimal Places, and Scientific Notation

Decimal places - the number of digits after the decimal point
Significant figures (digits) -the digits that are known with certainty plus one digit whose value has been estimated in a measured value.

Measurement	Decimal Places	Significant Figures	Scientific Notation
4003 m	\varnothing	4	$4.003 \times 10^{3} \mathrm{~m}$
160 N	\varnothing	2	$1.6 \times 10^{2} \mathrm{~N}$
160 N	\varnothing	3	$1.60 \times 10^{2} \mathrm{~N}$
30.00 kg	2	4	$3.000 \times 10^{1} \mathrm{Kg}$
0.00610 m	5	3	$6.10 \times 10^{-3} \mathrm{~m}$

$$
\cdots-610 \mathrm{~m}
$$

Rules for determining significant figures:

1. Nonzero digits in a measurement are always significant.
2. Zeros that appear before a nonzero digit are NOT significant.

Ex -0.002 m (1 significant figure) and 0.13 g (2 sf.).
3. Zeros that appear between nonzero digits are significant.

Ex -0.705 kg (3 sf.) and 2006 km ($4 \mathrm{s.f}$.).
4) Zeros that appear after a nonzero digit are significant only if:
(a) followed by a decimal point

$$
\text { Ex }-40 \mathrm{~s}(1 \text { s.f. }) \text { and } 20 . \mathrm{m}(2 \mathrm{s.f} .)
$$

(b) they appear to the right of the decimal point.

Ex -37.0 cm (3 spf.) and 40.00 m (4 sf.).

Addition and Subtraction Rule

When adding or subtracting measured values, the operation is performed and the answer is rounded to the same decimal place as the value with the fewest decimal places.

Multiplication and Division Rule

When multiplying or dividing measured values, the operation is performed and the answer is rounded to the same number of significant figures as the value having the fewest number of significant figures.

Perform the following calculations and answer to the correct number of sig figs:
a) 11.44 m
b) Add $2.34 \mathrm{~m}, 35.7 \mathrm{~m}$ and 24 m
c) $(0.304 \mathrm{~cm})(73.84168 \mathrm{~cm})$
d)

$22.4 \mathrm{~cm}^{2}$
3sf
d) $0.1700 \mathrm{~g} \div 8.50 \quad 3$ sf.
$2.00 \times 10^{-2} \mathrm{~g} / \mathrm{L}$ 5.00 m
62 m
0.11 m
13.2 m

+ 29.8 m

Fundamental and Derived Units

The SI (International System) system of units defines seven fundamental units from which all other units are derived.
For example:
The meter is the length of the path traveled by light in vacuum during a time interval of $1 / 299792458$ of a second.
The second is the duration of 9192631770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the cesium 133 atom.

Fundamental Units

Quantity	Units	Symbol
Length	meter	m
Mass	Kilogram	Kg
Time	second	S
Electric current	ampere	A
Temperature	Kelvin	K
Amount	mole	mol
Luminous intensity	candela	cd

Derived Units

New (derived) units can be named by combining the fundamental units.
a) What is the derived unit for mass per length?

b) What is the derived unit for electric current times time? A.S ((coulomb)
c) What is the derived unit for mass times length per time? $\lg \frac{m}{S}$ (momentum)

Note: Sometimes a derived unit will have a new name.

$$
\text { For example, } \operatorname{Kg} \frac{m}{S^{2}}=1 N
$$

Metric Prefixes and

Prefixes for Powers of Ten

'REFIX	SYMBOL	NOTATION
tera	T	10^{12}
giga	G	10^{9}
mega	M	10^{6}
kilo	k	10^{3}
deci	d	10^{-1}
cent	c	10^{-2}
mali	m	10^{-3}
micro	H	10^{-6}
nano	n	10^{-9}
pico	p	10^{-12}

1. Convert 45.20 centimeters into meters.

$$
45.20 \mathrm{~cm} \times \frac{1 \mathrm{~m}}{100 \mathrm{ch}}=4.520 \times 10^{-1} \mathrm{~m}
$$

Factor-Label Method for Converting Units
a) Write factors so units cancel leaving desired units.
b) Write " 1 " next to each prefixed unit.
c) Write the power of 10 (i.e.- the exponent) with each base unit.
2. Convert 1.9 A into microamps.
okay it not completed

$$
1.9 \mathrm{~A} \times \frac{1 \mathrm{~mA}}{1 \times 10^{-6}} \mathrm{~A}=1.9 \times 10^{6} \mathrm{\mu A}
$$

3. Convert 0.0340 pm into kilometers.

$$
0.0340 \mathrm{ppi} \times \frac{1 \times 10^{-12} \mathrm{nx}}{1 \mathrm{pm}} \times \frac{1 \mathrm{Km}}{1 \times 10^{3} \mathrm{~m}}=3.40 \times 10^{-17} \mathrm{~km}
$$

4. Convert $12.8 \mathrm{~cm}^{2}$ into m^{2}.

$$
12.8 \mathrm{~mm}^{6} \times\left(\frac{1 \times 10^{-2} \mathrm{~m}}{6 \pi}\right)^{2}=1.28 \times 10^{-3} \mathrm{~m}^{2}
$$

5. Convert $4700 \mathrm{~kg} / \mathrm{m}^{3}$ into $\mathrm{g} / \mathrm{cm}^{3}$

$$
4700 \frac{1 g}{m p} \times \frac{1 \times 10^{-2} \mathrm{~g} \mathrm{~g}}{\mathrm{~cm}} \times \frac{1 \times 10^{-2} \mathrm{~m}}{\mathrm{~cm}} \times \frac{1 \times 10^{-2}}{\mathrm{~cm}} \times \frac{1000 \mathrm{~g}}{\mathrm{Kg}}=
$$

6. Convert 55 mph into m / s. $(1.0 \mathrm{mile} \approx 1.6 \mathrm{~km})$

$$
\begin{aligned}
& \text { or } 2.4 \times 10^{1} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Extra practice
7. Convert 700 seconds into nanoseconds.

$$
7 \times 10^{11} \mathrm{~ns}
$$

8. Convert 2.40 gigabytes into bytes.

$$
2.40 \times 10^{9} \text { bytes }
$$

9. Convert $10.25 \mathrm{M} \ell$ into $\mathrm{m} \ell$.

$$
1.025 \times 10^{10} \mathrm{~mL}
$$

10. Convert $45.0 \mathrm{~m}^{3}$ into mm^{3}.

$$
4.50 \times 10^{10} \mathrm{~mm}^{3}
$$

$$
\left(\frac{10^{3} \mathrm{~mm}}{1 \mathrm{~m}}\right)^{3} \times 45 \cdot \mathrm{~m}^{3}
$$

11. Convert $92.3 \mathrm{~kg} / \mathrm{cm}^{3}$ into $\mathrm{g} / \mathrm{m}^{3}$.

$$
9.23 \times 10^{10} \frac{\mathrm{~g}}{\mathrm{~m}^{3}}
$$

12. Convert $30 . \mathrm{m} / \mathrm{s}$ in to mph .

$$
68 \mathrm{mph}
$$

Accuracy: An indication of how close a measurement is to the accepted value (a measure of correctness)
Precision: An indication of the agreement among a number of measurements made in the same way (a measure of exactness) how close measurements are to each other

Rate the following groupings of shots on their accuracy and precision:

precise bot
not accurate.

B

not precise
or accurate (?)

C

accurate

- precise

D

not accurate not precise(?)

Systematic Error: An error associated with a particular instrument or experimental technique that causes the measured value to be off by a consistent, predictable amount each time.

Random Uncertainty: An uncertainty produced by unknown and unpredictable variations in the experimental situation whereby the recorded measurement has an equal probability of being above or below the true value.

1) Which targets) above represents measurements made with significant systematic error? $A+D$
(not accurate)
2) Which targets) above represent measurements made with significant random uncertainty? $B \neq D$
3) Which type of uncertainty affects the accuracy of results? system tic error
4) Which type of uncertainty affects the precision of results? random uncertainty
5) Which type of uncertainty can be eliminated from an experiment? systematic error
6) Which type of uncertainty can be reduced in an experiment but never eliminated? random uncertainty
7) State a general method for reducing random uncertainty. repeated thais
8) Repeated measurements can make your answer more
 but not more \qquad accurate
9) An accurate experiment has low
10) A precise experiment has low
 random uncertainty
