1. Define the following terms:
a. Equilibrium
not force $=0 /$ forces balanced
b. Force
push or pull
c. Acceleration
any change in veboity
d. Momentum

$$
\text { mass } x \text { velocity }
$$

e. Inertia
Masishere to chagos in notion
f. Friction fore the rust motion
g. Direct relationship between variables
nurse in 1 velate to min cense in ot h
h. Inverse relationship between variables
i. Strong relationship between variables
 "Weak relationship between variables
k. control variable)
an 1 relates to small change in kept constant during experiment 2. What does the cons trow taw of Motion state?
objects tend t keep the motion the already have unless a force acts
3. What is the mathematical equation related to the $2^{\text {nd }}$ Law of Motion that relates force, mass and acceleration?

$$
a=F / m
$$

4. What does the $2^{\text {nd }}$ Law of Motion state?
accel is proportion to force + inversely proportional to mass
5. What does the $3^{\text {rd }}$ Law of Motion state?

6. What must be true of the forces acting on objects if their motion is not changing?
balanced
7. A train and a car collide. What is true about the forces that each vehicle exerts on the other?
EQual strength
8. In the collision described in the previous question, why are the forces as you described?
Bid land
9. What does the $2^{\text {nd }}$ Law of Motion state about the relationship between force and acceleration?

$$
\operatorname{acce} \sim \text { مrce }
$$

10. What does the $2^{\text {nd }}$ Law of Motion state about the relationship between mass and acceleration?

$$
\operatorname{acce}\} \sim \frac{1}{\operatorname{man} \rho}
$$

11. In the " $1^{\text {st }}$ and $2^{\text {nd }}$ Laws of Motion" lab, what did you data show about the relationship between the force put onto the car and the speed that it attained?

12. In the " $1^{\text {st }}$ and $2^{\text {nd }}$ Laws of Motion" lab, what did you data show about the relationship between the mass of the car and the speed that it attained?
greatw mass = Lower speed
13. In the " $1^{\text {st }}$ and $2^{\text {nd }}$ Laws of Motion" lab, why did the car's speed change when the mass increased?

$$
\text { accel } / \sim \frac{1}{\text { mass }}
$$

14. What is the SI unit of force?
newton (N)
15. If 3 times the force is applied to the same object, what will be true of its acceleration?

$$
3 x \text { greater }
$$

16. The action force is "the rifle pushes the bullet forward." What is the reaction force?
the bullet pushes the rifle backward
17. The action force is "the rocket pushes down on the exhaust gases." What is the reaction force?
the exhaust gases push the rocket up
18. An insect and a car windshield collide. If the windshield exerts a 2 N force on the bug, what is the force exerted by the bug on the car windshield?

19. In the " 3 rd Law of Motion" lab, what was true of the force that moved the cars apart?
Constant
20. In the " 3 rd Law of Motion lab, what was true of the speeds of each car when the masses were NOT equal?
not EQual
21. If a rock has 10 times more mass than an apple, how will the inertia of each object compare?

$$
\begin{aligned}
& \text { rock has } 10 x \text { more inertia } \\
& \text { mass - inertia c }
\end{aligned}
$$

22. If a train has more inertia than a bicycle, what will be true about changing the motion of each object?
harder to change motion the train
23. What is the mathematical equation that relates momentum, mass and velocity?

$$
\rho=m v
$$

24. If a train and a bicycle are moving at the same velocity, but the train has more mass than the bicycle, which has more momentum? Why?

$$
\text { tram -bk } p=A v
$$

25. If there are 2 identical bicycles, and one has twice the velocity of the other, which one has more momentum? Why?
for str bloc - bcp=at
26. If there were no friction forces at all, and you threw a rock with a 10 N force, how much force would be required to keep it moving at constant velocity?
no force
27. Why is it that we almost never see objects in motion that stay in motion on Earth?
friction
28. A: forces

For each problem below, carry out these steps:

- Write the formula that you will use to solve the problem
- Re-write the formula, substituting known values with units
- Write the answer using the proper unit
- Check you answer for the proper number of significant figures
- Check you work for accuracy

1. What is the momentum of a 30.6 kg bicycle moving at $14.2 \mathrm{~m} / \mathrm{s}$?

$$
p=m v=(30.6 \mathrm{~kg})(14.2 \mathrm{~m} / \mathrm{s})=435 \mathrm{~kg} \mathrm{~m} / \mathrm{s}
$$

2. If a rock has a mass of 18.5 kg and its momentum is $4,200 \mathrm{~kg} \bullet \mathrm{~m} / \mathrm{s}$, what is the velocity of the rock?

$$
V=\frac{p}{m}=\frac{4,200 \mathrm{~s} \cdot \mathrm{~s} / \mathrm{s}}{18.5 \mathrm{~g}}=230 \mathrm{~m} / \mathrm{s}
$$

3. If a $70 . \mathrm{Kg}$ swimmer pushes off the wall with a force of 180 N , what will be the acceleration of the swimmer?

$$
\left(18-1 / s^{2}\right)
$$

$$
a=F / m=\frac{180 \mathrm{~N}}{70 . \mathrm{gy}}=
$$

$$
2.6 \mathrm{~m} / \mathrm{s}^{2}
$$

4. A construction worker raises a wooden beam with a force of $200 . \mathrm{N}$ and accelerates it upward at a rate of $1.3 \mathrm{~m} / \mathrm{s}^{2}$. What is the mass of the barbell?
5. How much force is needed to accelerate a 4.0 kg cat at a rate of $5.7 \mathrm{~m} / \mathrm{s}^{2}$?

$$
F=m a=(4.0 \mathrm{gg})\left(\mathrm{s} .7 \mathrm{~m} / \mathrm{s}^{2}\right)=\underbrace{23 \mathrm{~g} . \mathrm{m} / \mathrm{s}^{2}} \mathrm{~N}
$$

